PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Efficient phosphate removal in swine wastewatewater using Fe-Mn-modified pyro/hydrochar from swine manure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phosphorus in wastewater is one of the main causes of water eutrophication. Phosphorus removal from swine wastewater is always a challenge. To achieve on-site recycling of swine farm waste, the low-cost pyro/hydrochars and their Fe-Mn-modified form were prepared from swine manure as an efficient adsorbent for phosphate removal. The results showed that the phosphate removal efficiency of unmodified pyro/hydrochars was less than 7.77%, which was significantly increased to 58.21–83.76% for the Fe-Mn-modified-pyro/hydrochars. The maximum adsorption capacity of pyrochar was found on the Fe-Mn-modified-pyrochar (PC-600M) with a surface area of 102.03 m2/g and a micropore volume of 0.25 cm3/g. The PC-600M exhibited high adsorption capacity (26.07 mg/g) in a low concentration of phosphate (50 mg/dm3), and its removal efficiency reached up to 83.76% within 24 hours. Furthermore, the adsorption of phosphate on biochars without modification (HC-210 and PC-600) was validated using a first-order kinetic model, and the adsorption of phosphate on modified biochars (HC-210M and PC-600M) was well described by the second-order kinetic model and Langmuir isotherm. In addition, there is no significant difference in the adsorption of phosphorus between pyrochars and hydrochars, but the preparation cost of hydrochars is lower than that of pyrochars. It was confirmed that the low-cost Fe-Mn-modified pyro/hydrochar from swine manure had potential for efficient phosphate removal in wastewater treatment and would facilitate value-added utilization of swine manure.
Rocznik
Strony
83--101
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
autor
  • Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
  • Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, China
autor
  • Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
autor
  • Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
autor
  • Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
autor
  • Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
autor
  • Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
Bibliografia
  • [1] PARK J., WANG J.J., XIAO R., ZHOU B., DELAUNE R.D., SEO D., Effect of pyrolysis temperature on phosphate adsorption characteristics and mechanisms of crawfish char, J. Coll. Interf. Sci., 2018, 525, 143–151. DOI: 10.1016/j.jcis.2018.04.078.
  • [2] JIAO G.J., MA J., LI Y., JIN D., GUO Y., ZHOU J., SUN R., Enhanced adsorption activity for phosphate removal by functional lignin-derived carbon-based adsorbent: Optimization, performance and evaluation, Sci. Total Environ., 2020, 761, 143217. DOI: 10.1016/j.scitotenv.2020.143217.
  • [3] BACELO H., PINTOR A.M.A., SANTOS S.C.R., BOAVENTURA R.A.R., BOTELHO C.M.S., Performance and prospects of different adsorbents for phosphorus uptake and recovery from water, Chem. Eng. J., 2020, 381, 122566. DOI: 10.1016/j.cej.2019.122566.
  • [4] LI X., KUANG Y., CHEN J., WU D., Competitive adsorption of phosphate and dissolved organic carbon on lanthanum modified zeolite, J. Coll. Interf. Sci., 2020, 574, 197–206. DOI: 10.1016/j.jcis.2020.04.050.
  • [5] CHEN F.F., LI H.F., JIA X.R., WANG Z.Y., LIANG X., QIN Y.Y., CHEN W.Q., AO T.Q., Characteristic and model of phosphate adsorption by activated carbon electrodes in capacitive deionization, Sep. Purif. Technol. 2020, 236, 116285. DOI: 10.1016/j.seppur.2019.116285.
  • [6] HUANG W., ZHANG Y., LI D., Adsorptive removal of phosphate from water using mesoporous materials. A review, J. Environ. Manage., 2017, 193, 470–482. DOI: 10.1016/j.jenvman.2017.02.030.
  • [7] KARTHIKEYAN P., MEENAKSHI S., Synthesis and characterization of Zn-Al LDHs/activated carbon composite and its adsorption properties for phosphate and nitrate ions in aqueous medium, J. Mol. Liq., 2019, 296, 111766. DOI: 10.1016/j.molliq.2019.111766.
  • [8] WEI T., LI Q., WANG H.J., ZHANG G., ZHANG T., LONG Z., XIAN G., Advanced phosphate and nitrogen removal in water by La-Mg composite, Environ. Res., 2021, 193, 110529. DOI: 10.1016/j.envres. 2020.110529.
  • [9] FENG L., LI X., CHEN X., HUANG Y., PENG K., HUANG Y., YAN Y., CHEN Y., Pig manure-derived nitrogen-doped mesoporous carbon for adsorption and catalytic oxidation of tetracycline, Sci. Total Environ., 2020, 708, 135071. DOI: 10.1016/j.scitotenv.2019.135071.
  • [10] LARSON C., China’s lakes of pig manure spawn antibiotic resistance, Science, 2015, 80 (347), 704–704. DOI: 10.1126/science.347.6223.704.
  • [11] LIU Y., YAO S., WANG Y., LU H., BRAR S.K., YANG S., Bio- and hydrochars from rice straw and pig manure. Inter-comparison, Bioresour. Technol., 2017, 235, 332–337. DOI: 10.1016/j.biortech.2017.03.103.
  • [12] ZHANG P., SUN H., YU L., SUN T., Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars. Impact of structural properties of biochars, J. Hazard. Mater., 2013, 244– 245, 217–224. DOI: 10.1016/j.jhazmat.2012.11.046.
  • [13] CHEN L., JIANG X., XIE R., ZHANG Y., JIN Y., JIANG W., A novel porous biochar-supported Fe-Mn composite as a persulfate activator for the removal of Acid Red 88, Sep. Purif. Technol., 2020, 250, 117232. DOI: 10.1016/j.seppur.2020.117232.
  • [14] YAN L., LIU Y., ZHANG Y., LIU S., WANG C., CHEN W., LIU C., CHEN Z., ZHANG Y., ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline, Bioresour. Technol., 2020, 297, 122381. DOI: 10.1016/j.biortech.2019.122381.
  • [15] ZHANG C., JIA C., CAO Y., YAO Y., XIE S., ZHANG S., LIN H., Water-assisted selective hydrodeoxygenation of phenol to benzene over the Ru composite catalyst in the biphasic process, Green Chem., 2019, 21, 1668–1679. DOI: 10.1039/c8gc04017f.
  • [16] TANG M., JIA R., KAN H., LIU Z., YANG S., SUN L., YANG Y., Kinetic, isotherm, and thermodynamic studies of the adsorption of dye from aqueous solution by propylene glycol adipate-modified cellulose aerogel, Coll. Surf. A, Physicochem. Eng. Asp., 2020, 602, 125009. DOI: 10.1016/j.colsurfa.2020.125009.
  • [17] LI J., LI B., HUANG H., LV X., ZHAO N., GUO G., ZHANG D., Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge, Sci. Total Environ., 2019, 687, 460–469. DOI: 10.1016/j.scitotenv.2019.05.400.
  • [18] MUTTAKIN M., MITRA S., THU K., ITO K., SAHA B.B., Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms, Int. J. Heat Mass Transf., 2018, 122, 795–805. DOI: 10.1016/j.ijheatmasstransfer.2018.01.107.
  • [19] HOU Y., HUANG G., LI J., YANG Q., HUANG S., CAI J., Hydrothermal conversion of bamboo shoot shell to biochar: Preliminary studies of adsorption equilibrium and kinetics for rhodamine B removal, J. Anal. Appl. Pyrol., 2019, 143, 104694. DOI: 10.1016/j.jaap.2019.104694.
  • [20] TRAZZI P.A., LEAHY J.J., HAYES M.H.B., KWAPINSKI W., Adsorption and desorption of phosphate on biochars, J. Environ. Chem. Eng., 2016, 4, 37–46. DOI:10.1016/j.jece.2015.11.005.
  • [21] ALAGHA O., MANZAR M.S., ZUBAIR M., ANIL I., MU’AZU N.D., QURESHI A., Comparative adsorptive removal of phosphate and nitrate from wastewater using biochar-MgAl LDH nanocomposites. Coexisting anions effect and mechanistic studies, Nanomat., 2020, 10 (2), 336. DOI: 10.3390/nano10020336.
  • [22] ZHU Z., HUANG C.P., ZHU Y., WEI W., QIN H., A hierarchical porous adsorbent of nano-α-Fe2O3/Fe3O4 on bamboo biochar (HPA-Fe/C-B) for the removal of phosphate from water, J. Water Proc. Eng., 2018, 25, 96–104. DOI: 10.1016/j.jwpe.2018.05.010.
  • [23] ZHANG M., GAO B., Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite, Chem. Eng. J., 2013, 226, 286–292. DOI: 10.1016/j.cej.2013.04.077.
  • [24] VIKRANT K., KIM K.H., OK Y.S., TSANG D.C.W., TSANG Y.F., GIRI B.S., SINGH R.S., Engineered/designer biochar for the removal of phosphate in water and wastewater, Sci. Total Environ., 2018, 616–617, 1242–1260. DOI: 10.1016/j.scitotenv.2017.10.193.
  • [25] GU L., DONG G., YU H., ZHANG K., LU X., WEN H., ZOU T., Preparation of porous biochar by urine assisted pyrolysis of sewage sludge and their application for Eriochrome Black T adsorption, J. Anal. Appl. Pyrol., 2020, 153, 104975. DOI: 10.1016/j.jaap.2020.104975.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f078f61-9fca-42ad-ab20-29354332f697
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.