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Zastosowanie programowania genetycznego w identyfikacji 

modelu dynamiki suwnicy pomostowej 

Abstract: Overhead cranes carry out an important function in the transportation of loads 

in industry. The ability to transport a payload quickly and accurately without excessive 

oscillations could reduce the chance of accidents as well as increase productivity. Accurate 

modelling of the crane system dynamics reduces the plant-model mismatch which could 

improve the performance of model-based controllers. In this work the simulation model to 

be identified is developed using the Euler-Lagrange method with friction. A 5-step ahead 

predictor, as well as a 10-step ahead predictor, are obtained using multi-gene genetic 

programming (MGGP) using input-output data. The weights of the genes are obtained by 

using least squares. The results of 15 different genetic programming runs are plotted on a 

complexity-mean square error graph with the Pareto optimal solutions shown. 
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Streszczenie: Suwnice pomostowe pełnią istotną funkcję w transporcie technologicznym 

w różnych obszarach przemysłu. Podniesienie wydajności i zapewnienie bezpiecznej 

realizacji zadań transportowych przez suwnice wymaga zastosowania skutecznych układów 

sterowania. Opracowanie dokładnego modelu dynamiki suwnicy jest istotnym elementem 

projektowania systemu sterowania, w szczególności sterowania predykcyjnego. W niniej-

szej pracy wykorzystano programowanie genetyczne MGGP oraz metodę najmniejszych 

kwadratów do identyfikacji modeli predykcji pozycji i kąta wychylenia ładunku 

przemieszczanego przez suwnicę. W rezultacie przeprowadzonych badań uzyskano modele 

5- i 10-krokowej predykcji dla modelu suwnicy wyprowadzonego z równań Eulera-

Lagrange’a. Wyniki poddano analizie wielokryterialnej z uwzględnieniem złożoności 

modelu i błędu średniokwadratowego w celu wyznaczenia rozwiązania optymalnego 

w sensie Pareto. 

Słowa kluczowe: programowanie genetyczne, suwnica, model nieliniowy, identyfikacja  
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1. Introduction 

Overhead cranes, an example of material handling system, play an important role in 

several sectors, such as transportation and manufacturing. Cranes are a classic example of 

a nonlinear underactuated system which leads to difficulty in simultaneously controlling the 

positioning of the crane as well as suppressing the payload oscillations. Excessive 

oscillations can not only increase settling time and reduce positional accuracy but can also 

be dangerous to surroundings as well as to the payload itself, especially in the case of 

transportation of hazardous or heavy loads. In order to achieve effective control of both 

positioning and oscillation suppression it is important to have an understanding of the 

underlying dynamic model describing the system.  

Many control methods require a dynamical model of the system to be able to determine 

its effectiveness in terms of stability and feedback performance characteristics and thus 

providing a better model can result in better performance. Several methods for modelling 

material handling systems have been used such Lagrangian method, bond-graph approach, 

Takagi-Sugeno fuzzy models [19] or Multibody dynamics simulation [7]. Inadequate 

dynamic models, due to initial assumptions or the result of system changes associated with 

ageing, result in plant-model mismatch. Model mismatch causes deterioration of 

performance in model-based controls such as model predictive control, generalized 

predictive control or feedback linearizing control. In some instances, improperly configured 

controller parameters can eventually lead to system failure [8]. In order to obtain a more 

accurate model, input-output identification methods can be used. Genetic programming, 

which was developed by Koza [11] and is related to genetic algorithms, has been used in 

input-output identification of nonlinear dynamical systems [4,9,15] without having selected 

a particular model structure a priori. There have been several works [1,2,3,10,17] that have 

utilized genetic algorithms for the control, identification and planning of cranes. In contrast 

to other machine learning methods such as artificial neural networks, which have been able 

to fit models to high accuracy, but as black box models lose their interpretability [5], genetic 

programming is capable of symbolic regression in which an analytical relationship of the 

model is obtained. 

The rest of the article is organized as follows. Section 2 describes the dynamical model 

of the crane with friction, this model is used in the simulation of the system to obtain input-

output data. Multi-gene genetic programming used to obtain the mathematical expression 

describing the predictors is described in section 3. The numerical simulation is carried out 

in MATLAB/Simulink and results are presented in section 4. The final remarks are made 

in section 5. 
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2. Dynamic model 

A planar model of an overhead crane is shown in fig. 1, where the trolley of mass M 

moves on a rigid bridge only in the x-direction and the position denoted by x. The rope is 

assumed to be an inflexible cable with length l carrying a payload, modelled as a point mass 

m suspended below the trolley, the payload swing angle is denoted by θ. While friction 

between the trolley and the bridge are modelled, we neglect the effect of friction and air 

resistance acting on the payload. 

 

 

Fig. 1. Planar model of an overhead crane 

The equations are obtained using the Euler-Lagrange (1) method [12] and are shown 

below: 
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The derivatives with respect to the generalized coordinates are given in (3) 
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We then obtain the equations of motion of the overhead crane  

 

(𝑀 + 𝑚)�̈� + 𝑚𝑙�̈� cos 𝜃 − 𝑚𝑙�̇�2 sin 𝜃 = 𝐹   

𝑚𝑙2�̈� + 𝑚𝑙 cos 𝜃 �̈� + 𝑚𝑔𝑙 sin 𝜃 = 0   
(4) 

 

The total force F is composed of the actuating force on the trolley as well as the 

friction between the trolley and the bridge. The nonlinear friction model is composed of 

the sum of Coulomb friction, damping and a third term which approximates other 

nonlinear effects [20]. The friction model is given below: 

 

𝐹𝑓𝑟 = 𝑓𝑓𝑟0 tanh (
�̇�

𝜉
) + 𝑘𝑝�̇� + 𝑘𝑟|�̇�|�̇� (5) 

 

3. Multi-gene genetic programming 

Genetic programming is an evolutionary algorithm that is similar to genetic algorithm. 

While other techniques require a model structure a priori, genetic programming searches 

for the model structure given a set of functions. The most common way to represent 

individual functions in genetic programming is by using syntax trees. 

Similar to other evolutionary algorithms genetic programming creates an initial 

population randomly. There are several methods of initialization such as full, grow, and 

ramped half-and-half [18], and PTC2 [13]. In full, a maximum depth is specified, and a 

random tree is generated by choosing terminal nodes only once the maximum depth is 

reached. In grow, a maximum depth is specified but a terminal or nonterminal node can be 

chosen at any depth, although this leads to a wider variety of tree shapes and sizes compared 

to the full method there is no control on the expected tree size. In ramped half-and-half, half 

of the population is initialized with the full method while the other half is initialized with 

the full method. In PTC2 a maximum depth is specified as well as a probability distribution 

of tree sizes allowing more control over tree size. When the PTC2 algorithm chooses a tree 

size from the distribution. It should be noted that PTC2 does not guarantee the tree size as 

it can produce a tree that is slightly larger. 
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A new population is created in every subsequent generation by genetic operators such 

as subtree crossover, subtree mutation and direct reproduction. In direct reproduction the 

individuals that have the best fitness in the entire population are carried on directly into the 

next generation without any alteration. When crossover occurs, random individuals are 

chosen which undergo tournament selection. Once two parents are obtained then a random 

gene is chosen in each parent, then a random node is chosen at each tree and subtrees are 

swapped as shown in fig. 2. When mutation occurs, a random individual is selected from 

the population after which a random node is selected, and the subtree replaced by a newly 

created subtree as is shown in fig. 3.  

In multi-gene genetic programming the individual is composed of one or more genes 

each represented by a tree. The overall function is then a weighted linear combination of 

genes [6] with respect to the parameters. 

 

�̂� = 𝑤0 + ∑ 𝑤𝑖𝐺𝑖(𝒙)

𝑖=𝑛

𝑖=1

  (6) 

 

Where wi is the i-th gene weight, Gi(x) is a function obtained by genetic operations and 

is represented by the tree structure. This linear in the parameter structure makes it possible 

to use least squares to obtain the parameter values wi using (7)  

 

𝑤 = (𝐺𝑇𝐺)−1𝐺𝑇𝑦 (7) 

 

Where the i-th columns of the matrix G are obtained by evaluating Gi(x) using the 

input vector x. 

 

 
Fig. 2. Crossover operator 
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Fig. 3. Mutation operator 

4. Simulation and Results 

Simulation of the overhead crane with parameters given in table 1 to obtain the training 

and validation data for multi-gene genetic programming based identification for a 5-step 

ahead predictor as well as a 10-step ahead predictor for both the sway and the position of 

the trolley. The input signal was chosen to be white noise to persistently excite the system. 

The simulation was carried out for 25s with a sampling time of 0.05s. The PTC2 

initialization method was chosen as it helps fight bloat caused by the subtree mutation by 

being able to specify a desired tree size [14]. 

The genetic programming parameters are given in table 2. The vector x is composed 

of past data while the vector u is composed of the white noise signal for the position 

predictor, and the position for the sway predictor. The objective is to minimize the mean 

square error of the n-step ahead predictor. The function set consists of addition, 

multiplication, tanh and analytic quotient [16]. Analytic quotient is given in (8) 

 

adiv(𝑎, 𝑏) =
𝑎

√𝑏2 + 1
 (8) 

 

The genetic program is run 15 times for both the position and sway predictor model. 

The best solution from each run is taken together with its MSE as well as its complexity, 

where the complexity is calculated as the sum of all gene nodes. Then a Pareto optimal 

solution that minimizes both MSE and complexity from all runs. 
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Table 1 

Model parameters 

Trolley mass  500kg 

Payload mass range  [1-50]kg 

Rope length range  [1-10]m 

Coulomb friction coefficient  4.4 

Damping coefficient  0.05 

Coefficient of approximation of other effects  0.01 

Static friction coefficient  0.01 

 

Table 2 

MGGP parameters 

Parameter Value 

Population size 64 

Number of generations 100 

Initialization method PTC2 

Max tree depth initialization 5 

Max number of genes 6 

Terminal Set x(k-1), x(k-2), x(k-3), u(k-1), u(k-2), u(k-3), M, m, g, l 

Non-terminal set +,✕,adiv, tanh 

Crossover frequency 0.84 

Mutation frequency 0.14 

Direct reproduction 0.04 

 

The 5-step ahead predictor, as well as the 10-step ahead predictor, are shown in figs. 

4-5 and figs. 8-9 respectively. Figs. 6-7 and figs. 10-11 show the residuals of the predictors 

for the position and sway respectively. The maximum residuals for system parameters  

m = 24 kg and l = 5m of the sway angle are 0.0019 and 0.0069 for the 5-step ahead and  

10-step ahead predictors respectively while the maximum residuals for the position of the 

trolley are 0.0074 and 0.0330 for the 5-step ahead predictor and 10-step ahead predictor 

respectively. 

The plot of complexity and the MSE for the best solution of each run is shown in  

figs. 12-15 with the green circles indicating the Pareto frontier. The resulting 5-step ahead 

and 10-step ahead predictors describing the sway obtained from the Pareto frontier are given 

in (9) and (10) for position and sway respectively. The values for the weights of each 

predictor are given in table 3. 
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𝑥(𝑘 + 5) = 𝑤1𝑥(𝑘) + 𝑤2(𝑥(𝑘) + 𝑢(𝑘 − 1)) + 𝑤3(3𝑥(𝑘 − 1) + 𝑥(𝑘 − 2))

+ 𝑤4𝑢(𝑘) + 𝑤5(2𝑥(𝑘 − 1)) + 𝑤6𝑢(𝑘) 

(9) 

𝑥(𝑘 + 10) = 𝑤1𝑢(𝑘)

+ 𝑤2 (adiv (𝑢(𝑘 − 1), adiv(𝑥(𝑘) + 𝑥(𝑘 − 1), 𝑢(𝑘 − 1))))

+ 𝑤3 (adiv (adiv (𝑢(𝑘), adiv(𝑢(𝑘), 𝑢(𝑘

− 2))) , adiv(𝑢(𝑘), 𝑢(𝑘 − 2)))) + 𝑤4(2𝑥(𝑘) + 𝑥(𝑘 − 1))

+ 𝑤5(𝑥(𝑘 − 1) + 𝑥(𝑘 − 2)) + 𝑤6𝑥(𝑘 − 1) 

  

𝜃(𝑘 + 5) = 𝑤1(tanh(tanh(𝑀𝑥(𝑘 − 2) tanh(𝜃(𝑘)))))

+ 𝑤2(𝑥(𝑘) + tanh(𝜃(𝑘 − 1)))

+ 𝑤3 (tanh (adiv(tanh(𝜃(𝑘 − 2)) , 𝑙)))

+ 𝑤4(𝜃(𝑘) + tanh(𝜃(𝑘 − 2))) + 𝑤5𝜃(𝑘 − 1)

+ 𝑤6 (adiv(tanh(𝜃(𝑘 − 1)), 𝑙)) 

(10)  𝜃(𝑘 + 10) = 𝑤1(𝜃(𝑘)adiv(tanh(𝑀) , 2𝑙))

+ 𝑤2 (adiv(𝜃(𝑘 − 2), tanh(𝑀 + 𝜃(𝑘)))) + 𝑤3𝜃(𝑘)

+ 𝑤4𝜃(𝑘 − 1) + 𝑤5𝜃(𝑘)

+ 𝑤6 (adiv(tanh(𝑀) , 2𝑙)adiv (𝜃(𝑘

− 1), adiv(𝜃(𝑘 − 1), 𝜃(𝑘 − 2)))) 

 

Table 3 

Gene weights 

Predictor 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 

𝑥(𝑘 + 5) 21.6148 -9.7671e-5 15.6090 -0.0104 -41.5254 0.0105 

𝑥(𝑘 + 10) 3.5431e-4 -3.8221e-4 -1.7925e-4 -188.5501 59.4905 447.6691 

𝜃(𝑘 + 5) -1.6793e-4 5.9987 0.9877 11.9312 -43.8523 -1.0403 

𝜃(𝑘 + 10) -9.9848 45.6474 21.5550 -74.4195 21.5550 9.2207 
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Fig. 4. Position 5-step ahead Fig. 5. Position 10-step ahead 

  

Fig. 6. Position residual 5-step ahead  Fig. 7. Position residual 10-step ahead 

  

Fig. 8. Sway 5-step ahead predictor Fig. 9. Sway 10-step ahead predictor 

  

Fig. 10. Sway 5-step ahead residual Fig. 11. Sway 10-step ahead residual 

  

Fig. 12. Best 5-step ahead position solutions 

from all runs 

Fig. 13. Best 10-step ahead position solutions 

from all runs 
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Fig. 14. Best 5-step ahead sway solutions from 

all runs 

Fig. 15. Best 10-step ahead sway solutions 

from all runs 

5. Conclusions 

In this article we propose a MGGP approach for identification of an overhead crane 

using input-output data. The data used for training and validation were obtained from 

simulations in which the model was described by equations obtained from Euler-Lagrange 

method with added friction between the trolley and the bridge. MGGP was then used to 

obtain both the 5-step ahead predictor as well as the 10-step ahead predictor for both the 

trolley position and the payload sway. We show that MGGP provided satisfactory results 

in majority of the runs. 

Future work would include identification of a model with fewer assumptions such as 

a flexible cable as well as air resistance acting on the payload, as well as identification based 

on input-output data from an experimental stand. 
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