PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative assessment of Al2O3 modified biomasses from agricultural residues for nickel and cadmium removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The biodiversity of aqueous environments has been affected due to the disposal of wastewater highly contaminated with heavy metal ions, causing much damage to ecosystems. These pollutants are very toxic and bioaccumulate in living organisms. This work attempts to evaluate the adsorption of nickel ad cadmium ions using three biomasses from agricultural residues (corn cob – CC, orange peel – OP, and oil palm bagasse – PB) modified with alumina nanoparticles. The biomasses were characterized via compositional analysis and a point of zero charges to quantify the presence of lignin, cellulose, hemicellulose, and the feasible pH, taking advantage of the biomass charge. After modification with Al2O3 nanoparticles. The resulting adsorbents were characterized via FT-IR analysis to identify the functional groups that most contributed to the adsorption performance. Furthermore, the influence of Al2O3 nanoparticles was analysed on the adsorption capacities of the evaluated biomasses using batch systems at a temperature of 25°C and pH 6. All biomasses displayed a high content of cellulose, estimating a weight percentage of about 19.9%, 14.3%, and 13.1% for PB, OP, and CC samples, respectively. The FT-IR spectrum confirmed hydroxyl and carboxyl functional groups, which contribute to enhancing the adsorption capacities of the modified biomasses. Functional adsorption capacity was observed for all biomasses after modification with Al2O3 nanoparticles, achieving at pH 6.0 a cadmium removal from 92% (CC-Al2O3 and PB-Al2O3) up to 95.8±0.3% (OP-Al2O3). In nickel ions, it was estimated a broader adsorption capacity at pH 6.0 of about 86±0.4% after using the CC-Al2O3 sample, 88±0.1% for the PB-Al2O3 adsorbent, and 98±0.2% for the OP-Al2O3 sample, confirming the suitability of these Al2O3-modified biomasses for the removal of heavy metal ions.
Wydawca
Rocznik
Tom
Strony
29--34
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • University of Cartagena, Avenida del Consulado Calle 30 No. 48-152, Cartagena, Bolívar, Colombia
  • University of Cartagena, Avenida del Consulado Calle 30 No. 48-152, Cartagena, Bolívar, Colombia
  • University of Cartagena, Avenida del Consulado Calle 30 No. 48-152, Cartagena, Bolívar, Colombia
Bibliografia
  • BHATNAGAR A., SILLANPÄÄ M., WITEK-KROWIAK A. 2015. Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering Journal. Vol. 270 p. 244–271.
  • CARMONA TÉLLEZ S. 2008. Elaboración y caracterización de películas delgadas de óxido de aluminio: Propiedades ópticas, estructurales y eléctricas [Preparation and characterization of aluminum oxide thin films: Optical, structural and electrical properties]. MSc Thesis. México D.F. Instituto Politécnico Internacional pp. 87.
  • DENG Y., HUANG S., DONG C., MENG Z., WANG X. 2020. Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars. Bioresource Technology. Vol. 303, 122853. DOI 10.1016/j.biortech.2020.122853.
  • DUNGANI R., ADITIAWATI P., APRILIA S., YUNIARTI K., KARLIATI T., SUWANDHI I., SUMARDI I. 2018. Biomaterial from oil palm waste: Properties, characterization and applications. In: Palm oil. Ed. V. Waisundara. IntechOpen, 76412. DOI 10.5772/ intechopen.76412.
  • ES-SAHBANY H., BERRADI M., NKHILI S., HSISSOU R., ALLAOUI M., LOUTFI M. 2019. Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay. In: Materials Today. Proceedings. Vol. 13 p. 866–875. DOI 10.1016/j.matpr.2019.04.050.
  • FEITOZA N.C., GONÇALVES T.D., MESQUITA J.J., MENEGUCCI J.S., SANTOS M.-K.M.S., CHAKER J.A., CUNHA R.B., MEDEIROS A.M.M., RUBIM J.C., SOUSA M.H. 2014. Fabrication of glycine-functionalized maghemite nanoparticles for magnetic removal of copper from wastewater. Journal of Hazardous Materials. Vol. 264 p. 153–160. DOI 10.1016/j.jhazmat.2013. 11.022.
  • FONSECA-CORREA R.A., GIRALDO L., MORENO-PIRAJÁN J.C. 2019. Thermodynamic study of adsorption of nickel ions onto carbon aerogels. Heliyon. Vol. 5. No. February e01789. DOI 10.1016/j.heliyon.2019.e01789.
  • HERRERA A., RINALDI C. 2008. Synthesis and functionalization of magnetite nanoparticles with aminopropylsilane and carbo-xymethyldextran. Journal of Material Chemistry. Vol. 18 p. 3650–3654.
  • HERRERA-BARROS A., TEJADA-TOVAR C., VILLABONA-ORTÍZ A., GONZÁLEZ-DELGADO A.D., ALVAREZ-CALDERON J. 2018a. Adsorption of nickel and cadmium by corn cob biomass chemically modified with alumina nanoparticles. Indian Journal of Science and Technology. Vol. 11 p. 1–11. DOI 10.17485/ijst/2018/v11i22/126125.
  • HERRERA-BARROS A., TEJADA-TOVAR C., VILLABONA-ORTÍZ A., GONZÁLEZ-DELGADO Á.-D., RUIZ-PATERNINA E. 2018b. Application of lemon peels biomass chemically modified with Al2O3 nanoparticles for cadmium uptake. Indian Journal of Science and Technology. Vol. 11 p. 1–5.
  • HERRERA-BARROS A., TEJADA-TOVAR C., VILLABONA-ORTÍZ A., GONZALEZ-DELGADO Á., MEJIA-MEZA R. 2019. Assessment of the effect of Al2O3 and TiO2 nanoparticles on orange peel biomass and its application for Cd (II) and Ni (II) uptake. Transactions of the ASABE. Vol. 62 p. 139–147.
  • ISLAM A., AWUAL R., ANGOVE M.J. 2019. A review on nickel (II) adsorption in single and binary component systems and future path. Journal of Environmental Chemical Engineering. Vol. 7. No. 5, 103305. DOI 10.1016/j.jece.2019.103305.
  • KAVAND M., ESLAMI P., RAZEH L. 2020. The adsorption of cadmium and lead ions from the synthesis wastewater with the activated carbon: Optimization of the single and binary systems. Journal of Water Process Engineering. Vol. 34, 101151. DOI 10.1016/j.jwpe.2020.101151.
  • KOCAOBA S. 2008. Adsorption of nickel (II) and cobalt (II) ions and application of surface complex formation model to ion exchange equilibria. Environmental Engineering Science. Vol. 25. No. 5 p. 697–702. DOI 10.1089/ees.2007.0081.
  • LASHEEN M., AMMAR N., IBRAHIM H. 2012. Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies. Solid State Sciences. Vol. 14 p. 202–210. DOI 10.1016/ j.solidstatesciences.2011.11.029.
  • LI J., PAN Y., XIANG C., GE Q., GUO J. 2006. Low temperature synthesis of ultrafine A-Al2O3 powder by a simple aqueous sol–gel process. Ceramics International. Vol. 32 p. 587–591.
  • LI X., WANG C., TIAN J., LIU J., CHEN G. 2020. Comparison of Adsorption Properties for Cadmium Removal from Aqueous Solution by Enteromorpha Prolifera Biochar Modified with Different Chemical Reagents. Environmental Research. Vol. 186, 09502. DOI 10.1016/j.envres.2020.109502.
  • LIANG S., GUO X., FENG N., TIAN Q. 2010. Effective removal of heavy metals from aqueous solutions by orange peel xanthate. Transactions of Nonferrous Metals Society of China. Vol. 20 p. 187–191. DOI 10.1016/S1003-6326(10)60037-4.
  • MADDODI S.A., ALALWAN H.A., ALMINSHID A.H., ABBAS M.N. 2020. Isotherm and computational fluid dynamics analysis of nickel ion adsorption from aqueous solution using activated carbon. South African Journal of Chemical Engineering. Vol. 32 p. 5–12. DOI 10.1016/j.sajce.2020.01.002.
  • MARTIN LARA M.A. 2008. Caracterización y aplicación de biomasa residual a la eliminación de metales pesados [Characterization and application of residual biomass to the removal of heavy metals]. Universidad de Granada. ISBN 9788469140956 pp. 424.
  • MERRIKHPOUR H., JALALI M. 2013. Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technologies and Environmental Policy. Vol. 15 p. 303–316. DOI 10.1007/s10098-012-0522-1.
  • MORENO-SADER K., GARCÍA-PADILLA A., REALPE A., ACEVEDO-MORANTES M., SOARES J. 2019. Removal of heavy metal water pollutants (CO2+ and Ni2+) using polyacrylamide/sodium montmorillonite (PAM /Na-MMT) nanocomposites. ACS Omega. Vol. 4 p. 10834–10844. DOI 10.1021/acsomega. 9b00981.
  • OLIVERO-VERBEL J., DUARTE D., ECHENIQUE M., GUETTE J., JOHNSON-RESTREPO B., PARSONS P. 2007. Blood lead levels in children aged 5–9 years living in Cartagena, Colombia. Science of the Total Environment. Vol. 372 p. 707–716. DOI 10.1016/j.scitotenv.2006.10.025.
  • PÉREZ-MARÍN A., AGUILAR M., MESEGUER V., ORTUÑO J., SÁEZ J., LLORÉNS M. 2009. Biosorption of chromium (III) by orange (Citrus cinensis) waste: Batch and continuous studies. Chemical Engineering Journal. Vol. 155 p. 199–206.
  • RIVAS-CANTU R.C., JONES K.D., MILLS P.L. 2013. A citrus waste-based biorefinery as a source of renewable energy: Technical advances and analysis of engineering challenges. Waste Management & Research. Vol. 31 p. 413–420. DOI 10.1177/ 0734242X13479432.
  • ROMERO-CANO L., GONZALEZ-GUTIERREZ L.V., BALDENEGRO-PÉREZ L.A., MEDINA-MONTES M. 2016. Preparation of orange peels by instant controlled pressure drop and chemical modification for its use as biosorbent of organic pollutants. Revista Mexicana de Ingeniería Química. Vol. 15. No. 2 p. 481–491.
  • SATHORN P., CHUDECHA K., VANKHAEW P., CHOOLERT V., CHUENCHOM L., INNAJITARA W., SIRICHOTE O. 2008. Adsorption of phenol from diluted aqueous solutions by activated carbons obtained from bagasse, oil palm shell and pericarp of rubber fruit. Songklanakarin Journal of Science and Technology. Vol. 30. No. 2 p. 185–189.
  • SEPÚLVEDA L.A., CUEVAS F.A., CONTRERAS E.G. 2015. Valorization of agricultural wastes as dyes adsorbents: Characterization and adsorption isotherms. Environmental Technology. Vol. 36. No. 15 p. 1913–1923. DOI 10.1080/09593330. 2015.1016119.
  • TEJADA-TOVAR C., HERRERA-BARROS A., VILLABONA-ORTÍZ A. 2020. Assessment of chemically modified lignocellulose waste for the adsorption of Cr (VI). Revista Facultad de Ingeniería. Vol. 29. No. 54, e10298. DOI 10.19053/01211129. v29.n54.2020.10298.
  • TOMAR V., PRASAD S., KUMAR D. 2014. Adsorptive removal of fluoride from aqueous media using Citrus limonum (Lemon) leaf. Microchemical Journal. Vol. 112 p. 97–103.
  • Twenergy 2014. Una iniciativa de endesa por la eficiencia y la sostenibilidad [An endesa initiative for efficiency and sustainability] [online]. [Access 10.10.2017]. Available at: https://twenergy.com/
  • XU M., LIU J., HU K., XU C., FANG Y. 2016. Nickel(II) removal from water using silica-based hybrid adsorbents: Fabrication and adsorption kinetics. Chinese Journal of Chemical Engineering. Vol. 24 p. 1353–1359.
  • YANNI S.F., WHALEN J.K., MA B. 2010. Crop residue chemistry, decomposition rates, and CO2 evolution in Bt and Non-Bt corn agroecosystems in North America: A review. Nutrient Cycling in Agroecosystems. Vol. 87 p. 277–293. DOI 10.1007/s10705-009-9338-8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f065fe8-466e-4a58-9785-6871daff60c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.