PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Techno-economic assessment of cooperation of hybrid renewable energy sources with hydrogen storage

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Techniczno-ekonomiczna ocena współpracy hybrydowych odnawialnych źródeł energii z układem magazynowania wodoru
Języki publikacji
EN
Abstrakty
EN
The paper presents a technical and economic analysis of the power supply for a model industrial facility with the use of the most promising renewable energy sources (RES), supported by a hydrogen energy storage. This scenario was compared with the variants of supplying the facility directly from the grid and from RES without energy storage. A strategy was proposed for powering the plant aimed at maximising self-consumption of self-generated electricity. In this paper the importance of hybrid renewable energy systems (HRES) with hydrogen energy storage in the Polish Power System is pointed out. For the analysed industrial object, the modelling and optimisation of the systems were performed in the HOMER software, in terms of the lowest net present cost. Attention was also paid to the need to compress hydrogen and the associated electricity consumption.
PL
W artykule przedstawiono analizę techniczno-ekonomiczną zasilania modelowego obiektu przemysłowego z wykorzystaniem najbardziej perspektywicznych odnawialnych źródeł energii (OZE), wspomaganych magazynem wodoru. Scenariusz ten porównano z wariantami zasilania obiektu bezpośrednio z sieci oraz z OZE bez układu magazynowania energii. Zaproponowano strategię zasilania obiektu mającą na celu maksymalizację zużycia energii elektrycznej wytworzonej przez OZE na potrzeby własne. W artykule podkreślono znaczenie hybrydowych systemów OZE z wodorowym magazynem energii w Krajowym Systemie Elektroenergetycznym. Dla analizowanego obiektu przemysłowego, z wykorzystaniem oprogramowania HOMER przeprowadzono modelowanie i optymalizację systemów pod kątem najniższego kosztu bieżącego netto. Zwrócono uwagę na konieczność sprężania wodoru i związane z tym zużycie energii elektrycznej.
Czasopismo
Rocznik
Tom
Strony
23--31
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wzory
Twórcy
  • Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdansk
  • Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdansk
autor
  • Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdansk
Bibliografia
  • [1] Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Available online:https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en#documents [accessed on 04 Jun. 2023].
  • [2] Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. A hydrogen strategy for a climate-neutral Europe. Available online: https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf [accessed on 04 Jun.2023].
  • [3] Ministry of Climate and Environment. Energy Policy of Poland until 2040. Available online: https://www.gov.pl/attachment/62a054de-0a3d-444d-a969-90a89502df94 [accessed on 06 Jun. 2023].
  • [4] The government program of co-financing for photovoltaic micro-installations My current (in Polish). Available online: https://mojprad.gov.pl/ [accessed on 18 Jun. 2023].
  • [5] Oliveira A.M.; Beswick R.R.; Yan Y.: A green hydrogen economy for a renewable energy society, Current Opinion. Chemical Engineering 2021, 33, 100701. DOI:10.1016/j.coche.2021.100701.
  • [6] Smolinka T.; Ojong E.T.; Garche J.:Hydrogen production from renewable energies - Electrolyzer technologies in Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Moseley P.T., Garche J.; Elsevier: Amsterdam, Netherlands 2015, pp. 103-28. DOI:10.1016/B978-0-444-62616-5.00008-5.
  • [7] Khan M.A.; Young C.; MacKinnon C.; Layzell D.: The techno-economics of hydrogen compression. Transition Accelerator Technical Briefs 2021, 1, 1-36.
  • [8] Elberry A.M.; Thakur J.; Santasalo-Aarnio A.; Larmi M.: Large-scale compressed hydrogen storage as part of renewable electricity storage systems. Int. J. Hydrog. Energy 2021, 46, 15671-90. DOI:10.1016/j.ijhydene.2021.02.080.
  • [9] Stellen M.; Jörissen L.: Hydrogen conversion into electricity and thermal energy by fuel cells: Use of H2-systems and batteries in Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Moseley P.T., Garche J., Elsevier: Amsterdam, Netherlands 2015, pp. 143-58. DOI:10.1016/B978-0-444-62616-5.00010-3.
  • [10] Newborough M.; Cooley G.: Green hydrogen: water use implications and opportunities. Fuel Cells Bulletin 2021, 2021(12), 12-15. DOI:10.1016/S1464-2859(21)00658-1.
  • [11] Eriksson E.L.V.; Gray E., Mac A.: Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems - A critical review. Applied Energy 2017, 202, 348-64. DOI:10.1016/j.apenergy.2017.03.132.
  • [12] Ammari C.; Belatrache D.; Touhami B.; Makhloufi S.: Sizing, optimization, control and energy management of hybrid renewable energy system - A review. Energy and Built Environment 2021 (In Press). DOI:10.1016/j.enbenv.2021.04.002.
  • [13] Kalinci Y.; Hepbasli A.; Dincer I.: Techno-economic analysis of a stand-alone hybrid renewable energy system with hydrogen production and storage options. Int. J. Hydrogen Energy 2015, 40, 7652-64. DOI:10.1016/j.ijhydene.2014.10.147.
  • [14] Acakpovi A.; Adjei P.; Nwulu N.; Asabere N.Y.: Optimal hybrid renewable energy system: A comparative study of wind/hydrogen/fuel-cell and wind/battery storage. Journal of Electrical and Computer Engineering 2020, 1756503. DOI:10.1155/2020/1756503.
  • [15] Mohamed M.A.; Eltamaly A.M.; Alolah A.: PSO-based smart grid application for sizing and optimization of hybrid renewable energy systems. PLOS ONE 2016, 11(8), e0159702. DOI:10.1371/journal.pone.0159702.
  • [16] Luta D.N.; Raji A.K.: Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications, Energy 2019, 166, 530-40. DOI:10.1016/j.energy.2018.10.070.
  • [17] Longe O.M.; Rao N.D.; Omowole F.; Oluwalami A.S.; Oni O.T.: A case study on off-grid microgrid for universal electricity access in the Eastern Cape of South Africa. Int. J. Energy Engineering 2017, 7(2), 55-63. DOI:10.5923/j.ijee.20170702.03.
  • [18] HOMER software. Available online: https://www.homerenergy.com/ [accessed on 22 Jun. 2023].
  • [19] CoolProp library. Available online: http://www.coolprop.org/ [accessed on 16 Jun. 2023].
  • [20] Kharel S.; Shabani B.: Hydrogen as a long-term large-scale energy storage solution to support renewables. Energies 2018, 11(10), 2825. DOI:10.3390/en11102825.
  • [21] Thirunavukkarasu M.; Sawle Y.: An examination of the techno-economic viability of hybrid grid-integrated and stand-alone generation systems for an Indian tea plant. Frontiers in Energy Research 2022, 10. DOI:10.3389/fenrg.2022.806870.
  • [22] Okundamiya M.S.: Size optimization of a hybrid photovoltaic/fuel cell grid connected power system including hydrogen storage. Int J Hydrog. Energy 2021, 46, 30539-46. DOI:10.1016/j.ijhydene.2020.11.185.
  • [23] Li J.; Liu P.; Li Z.: Optimal design of a hybrid renewable energy system with grid connection and comparison of techno-economic performances with an off-grid system: A case study of West China.Computers and Chemical Engineering 2022, 159, 107657. DOI:10.1016/j.compchemeng.2022.107657.
  • [24] Nguyen N.T.; Matsuhashi R.; Vo T.T.B.C.: A design on sustainable hybrid energy systems by multi-objective optimization for aquaculture industry. Renewable Energy 2021, 163, 1878-94. DOI:10.1016/j.renene.2020.10.024.
  • [25] Debarberis L.; Lazzeroni P.; Olivero S.; Ricci V.; Stirano F.; Repetto M.: Technical and economical evaluation of a PV plant with energy storage. IECON Proceedings, 39th Annual Conference of the IEEE Industrial Electronics Society 10-13 Nov. 2013, Viena, Austria. DOI:10.1109/IECON.2013.6700261.
  • [26] Chojnacki A.: Analysis of daily, weekly and annual load variability of electricity in power networks of communal and industrial customers. Electrotechnical Overview (in Polish) 2018, 6, 56-61. DOI:10.15199/48.2018.06.10.
  • [27] Shabani B.; Andrews J.: Standalone solar-hydrogen systems powering fire contingency networks. Int. J. Hydrog. Energy 2015, 40, 5509-17. DOI:10.1016/j.ijhydene.2015.01.183.
  • [28] Energa electricity tariff. Available online: https://www.energa-operator.pl/upload/wysiwyg/dokumenty_do_pobrania/taryfa/taryfa_2018_ENERGA-OPERATOR_SA.pdf [accessed on 29 May 2023].
  • [29] Annual price indices of consumer goods and services since 1950 published by Central Statistical Office (in Polish). Available online: https://stat.gov.pl/obszary-tematyczne/ceny-handel/wskazniki-cen/wskazniki-cen-towarow-i-uslug-konsumpcyjnych-pot-inflacja-/roczne-wskazniki-cen-towarow-i-uslug-konsumpcyjnych/ [accessed on 18 Jun. 2023].
  • [30] Basic NBP interest rates in 1998-2022 (in Polish). Available online: https://www.nbp.pl/home.aspx?f=/dzienne/stopy_archiwum.htm [accessed on 26 Jun. 2023].
  • [31] Average exchange rates of foreign currencies in PLN (in Polish). Available online: https://www.nbp.pl/home.aspx?f=/kursy/arch_a.html [accessed on 04 Jun. 2023].
  • [32] Vestas V110/2000 [accessed on 15 May 2023]. Available online: https://www.thewindpower.net/turbine_en_590_vestas_v110-2000.php [accessed on 21 May 2023].
  • [33] Vestas V110-2.0 MW brochure. Available online: https://www.vestas.com/en/products/2-mw-platform/V110-2-0-mw [accessed on 21 May 2023].
  • [34] Inoue, A.; Takahashi R.; Murata T.; Tamura J.; Kimura M.; Futami M.O.; Ide K.: A calculation method of the total efficiency of wind generators. Elect. Eng. Jpn. 2006, 157, 52-62. DOI:10.1002/eej.20426.
  • [35] Manwell J.F.; McGowan J.G.; Rogers A.L.: Wind Energy Explained. Theory, Design and Application, 2nd ed.; Wiley: Chichester, UK, 2009, pp. 45-46.
  • [36] European Commision Photovoltaic Geographical Information System. Available online:https://re.jrc.ec.europa.eu/pvg_tools/en/ [accessed on 19 May 2023].
  • [37] LG NeON R catalog card. Available online: https://www.lg.com/global/business/download/resources/solar/NeonR_60_V5_90812.pdf [accessed on 23 May 2023].
  • [38] Duffie J.A.; Beckman W.A.: Solar Engineering of Thermal Processes, 4th ed. Wiley: Hoboken, US, 2013, pp. 824-36.
  • [39] Alturaiki S.; Salameh Z.M.: Emulation for de-rating and degradation/turbidity factors effects on PV module. 2016 IEEE Power and Energy Society General Meeting (PESGM), 17-21 Jul. 2016, Boston, MA, US.
  • [40] Masrur, H.; Konneh, K.V.; Ahmadi, M.; Khan, K.R.; Othman, M.L.; Senjyu, T.: Assessing the techno-economic impact of derating factors on optimally tilted grid-tied photovoltaic systems. Energies 2021, 14, 1044. DOI:10.3390/en14041044.
  • [41] Brihmat F.; Mekhtoub S.: PV cell temperature / PV power output relationships HOMER methodology calculation. Int. J. Scientific Research and Engineering Technology 2014, 2.
  • [42] ENTSO-E, Scenario outlook & adequacy forecast. 30 June 2015. Available online: https://eepublicdown-loads.entsoe.eu/clean-documents/sdc-documents/SOAF/150630_SOAF_2015_publication_wcover.pdf [accessed on 18 Jun. 2023].
  • [43] Mayyas A.; Wei M.; Levis G.: Hydrogen as a long-term, large-scale energy storage solution when coupled with renewable energy sources or grids with dynamic electricity pricing schemes. Int. J. Hydrog. Energy 2020, 45, 16311-25. DOI:10.1016/j.ijhydene.2020.04.163.
  • [44] Rouholamini M.; Mohammadian M.: Heuristic-based power management of a grid-connected hybrid energy system combined with hydrogen storage. Renewable Energy 2016, 96, 354-65. DOI:10.1016/j.renene.2016.04.085.
  • [45] H-TEC PEM Electrolyser ME100/350 catalogue card. Available online: https://www.h-tec.com/en/products/detail/h-tec-pem-electrolyser-me100-350/me100-350/ [accessed on 19 May 2023].
  • [46] NedstackPemGen CHP-FCPS-100 brochure. Available online: https://nedstack.com/en/pemgen-solutions/stationary-fuel-cell-power-systems/pemgenchp-fcps-100 [accessed on 30 Jun. 2023].
  • [47] Stationary hydrogen storage applications. Available online: https://www.nproxx.com/hydrogen-storage-transport/stationary-applications/ [26 May 2023].
  • [48] Nexant Inc. et al. H2A hydrogen delivery infrastructure analysis models and conventional pathway options analysis results 2008, DOE Award Number: DE-FG36-05GO15032
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f00abf6-676b-4af4-b593-201b42cee604
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.