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Summary: A new procedure for analyzing power transformer windings with location-dependent 
circuit parameters, such as the series inductance, is presented. This dependence is introduced in order to 
take the inter-turn mutual inductive coupling into consideration. It can be expressed either by analytical 
expressions or even in a tabulated form. The paper addresses both the frequency and time domain ana-
lyses. They are based on replacing the winding by an adequate number of equivalent cascade connected 
two-ports. In contrast to the usual practice of applying the simple medium line representation, each of 
these two-ports is treated as a long transmission line. Their A, B, C, D generalized circuit constants will 
be therefore generally location-and frequency-dependent. The analyses will be conducted in the complex 
s-domain. The corresponding time-domain results can then be obtained by applying a numerical inver-
se Laplace transform. Expressions for the winding’s input impedance with different treatments of the 
transformer’s neutral point will be derived for any assumed number of the equivalent two-ports. Results 
pertinent to the frequency characteristics including the resonance frequencies are presented. The paper 
also describes the winding’s transient response to the application of two standard voltage stimuli. The 
suggested approach is validated by its application to a case study for which an analytical closed-form 
solution is available. The analysis of windings exhibiting nonuniformities in more than one equivalent 
circuit element should also be possible. 
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 I. INTRODUCTION

The time-domain and frequency-domain analyses are the 
two main approaches currently applied for finding the transients 
in transformer windings as well as the frequency response 
describing their internal oscillations and resonance phenomena, 
[1-14]. The frequency- (or, equivalently, the s-domain) approach 
assumes problem’s linearity. With this limitation, it has been 
used for deriving analytical expressions for the voltages 
and currents within the transformer and for identifying the 
winding’s resonance frequencies, [5-9]. Reference [10] is based 
on a concentrated parameter approach and presents a method 
for considering the non-uniformity of the winding’s series 
inductance, due to the mutual inductive interaction between 
any winding turn and all other ones. The winding is divided 
into a suitable number of sections represented by their non-
identical lumped ladder equivalent circuits. The simulation is 
then conducted by solving the corresponding set of simultaneous 
differential and algebraic equations in the Laplace domain. The 
model can be considerably refined by applying an alternative 
straight forward concentrated-parameter recursive s-domain 
analytical solution technique [11], as successfully used in 
[12] for analyzing transmission line towers. The simulation 
accuracy of the two above-mentioned approaches obviously 
increases with the assumed number of sections, which is limited 
by the available computational resources. This present paper 
suggested a more accurate and efficient approach. It is based 
on the distributed parameter analysis utilizing the A, B, C, D 
generalized circuit constants commonly used for simulating 
transmission lines. The proposed technique starts with replacing 
the winding by an adequate number of equivalent cascade 
connected two-ports. Each of these two-ports is treated as a 
long transmission line. This implies an improved accuracy if 
compared with the usual concentrated element representation. 

The A, B, C, D generalized circuit constants will be location- 
and frequency-dependent. The solution of the corresponding 
simultaneous algebraic two-port equations will yield the 
currents and voltages along the winding for any input 
stimuli as well as its input impedance, in the s-domain. As 
will be seen later, the suggested solution, augmented by the 
numerical inverse Laplace transform, lends itself quite well 
to both the transient and frequency analyses.

This paper is organized as follows: First, the basic concept 
is presented and the s-domain results are derived. This will 
be followed by its application to different case studies both 
in the frequency and the time domains. Before listing the 
paper’s conclusions, the suggested technique is validated by 
its application to a case study for which an exact analytical 
closed-form solution is available.  

II. METHOD OF ANALYSIS

Fig.1 illustrates the equivalent circuit of a winding section 
having a per unit length dx based on the winding’s total 
length, which is measured from the source terminal in meters 
or turns. The depicted circuit elements are defined as follows:

Fig.1. The winding representation and the equivalent circuit of an 
infinitesimal section of length dx.
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Cg	 capacitance to ground   
Go	 Conductance to ground    
L	 series inductance, which is a function of the
	 coordinate x
R	 series resistance   
Cs	 series (self) capacitance   
GS	 insulation conductance

It should be noted that the series inductance L is generally 
a function of the location x of the considered section. It 
takes into account the mutual inductances between the 
considered section at this location and the remaining ones. 
Since these mutual inductances decrease with the separation, 
the inductance L will assume its maximum value at the 
winding midpoint (x=0.5 per unit). A typical shape of this 
dependence is given in Fig. 2, adopted from reference [13] 
utilizing the evaluation of the Neumann’s formula integrals 
for assessing the mutual inductive coupling between any two 
winding turns. It ranges between the least values of 0.014H 
at both winding terminals to the highest value of 0.028H at 
its midpoint. This dependence of L on the coordinate x can 
be approximated by:

3
min max min( ) [ ( ). sin( )]L x L L L xπ= + −          (1) 

It should be noted, however, that other candidate functions 
for expressing L(x) can be adopted through curve fitting 
techniques.

The first step in the suggested technique for the winding 
analysis is to divide it into an adequate number of equivalent 
cascade connected two-ports, as shown in Fig.3. The source 
is represented by its Thevenin’s equivalent circuit and the 
neutral treatment is expressed by the general frequency 
dependent ZN(s) The two special cases ZN(s)=0 and ZN(s) 
=∞ describe the solidly-earthed and isolated neutral points, 
respectively. The corresponding inductance values are 
depicted in Fig.4 for m=16. In contrast to the usual practice 
of applying the simple medium line representation, each of 
these two-ports will be treated as a long transmission line. 
Their A, B, C, D generalized circuit constants will be therefore 
generally location- and frequency-dependent. The analyses 
will be conducted in the complex s-domain. Focusing on 
the n-th section, the x co-ordinates of its left and right side 
terminals are (n–1)/m and (n/m) per unit, respectively. The 
average value of the two corresponding series inductances 
will be used in order to find the generalized circuit constants 

of this section. In terms of transmission line theory, the series 
impedance and shunt admittance per unit length are given by 
the following two equations

1 1[( ) ( ) ]series s sZ sC G R sL − −= + + +               (2)

shunt g oY sC G= +
                          (3)

The symbol s denotes the complex frequency.     

           
The complex characteristic impedance and propagation 
constant of the equivalent line are defined as
 series shuntZ Yg =  and /C series shuntZ Z Y= , respectively.

In the s-domain, the transmission line constants are: 

  

A = D = cosh(gl)

B = ZC sinh(gl)                               (4) 

C = sinh(gl) / Zc                        

 
with the section length l = 1/m per unit.Fig. 2. Value of  L(x)  versus the coordinate x along the winding, [13].

Fig. 3. Representing the winding by m cascaded sections of length (1/m) 
per unit each.

Fig. 4. The exact inductance values (continuous curve) and the assumed 
stepped curve for the average inductances. The assumed number of sections 
is m =16.
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It should be noted that the inductance L in Eq. (2), and 
accordingly, g, ZC, A, B, C and D are all functions of the 
location x (or equivalently the section number n) and of the 
complex frequency s. 

For the steady state sinusoidal analysis, s should be 
replaced by jw, where w is the angular frequency and 

1j = − . The plots in Fig.5 show the magnitudes of the 
generalized constants A, B and C at 20 kHz for a transformer 
having the following circuit parameters adopted from [13]:

Cs = 2.07 pFarad,  Cg / Cs =10000, Go = 0.15 nSiemens,  

 R =2.198 Ω and Gs = 0.15 pSiemens; 

It can be seen that the three plots in Fig.5 are almost 
symmetrical with respect to the winding’s middle point n 
= m/2 = 8 at which A, C and D have their least values and 
B assumes its maximum value, respectively. The changes 
in these constants at 20 kHz are about 0.6%, 36% and 5%, 
respectively.

Referring to Fig.3, the two following equations can be 
written for the Section of number n:

1 1 1 1andm m m m m m m m m mV A V B I I C V D I+ + + += + = +   (5)               

Repeating this for all the m sections, and adding the two 
loop equations at the source and at the neutral point, a total 
number of (2m+2) equations will be available. All currents 
and voltages can then be obtained in terms of the complex 
frequency s, for any exciting source voltage E(s) and any 
neutral impedance ZN(s). 

III. SAMPLE RESULTS

A. The Frequency Response

This section will focus on the winding’s input impedance 
as seen from the source side. It is given by:

Zinput (s) = V1(s) / I1(s)                       (6)

where V1(s), I1(s) are the voltage and current at the left hand 
side (input) terminals of the first section, i.e. n = 1. It will 
depend primarily on both the frequency as well as on the 
winding’s neutral impedance ZN(s). 
1. Isolated Neutral

The upper four plots of Fig. 6 illustrate the effect of the 
frequency f, given in kHz on the x-axis, on the impedance 
magnitude, its impedance angle in degrees, its imaginary part 
and its real part, from top to bottom, respectively. The traces 
cover the frequency range 0 ≤ f ≤ 250 kHz. As expected, 
the DC input impedance is infinity. There are several series 
and parallel resonance frequencies which can be easily 
determined from the zero crossings of either the phase angle 
or the impedance imaginary part. The lowest resonance 
frequency of approximately 12 kHz is a series one followed 
by a parallel resonance at about 24 kHz. Between zero and 
12 kHz, the impedance is seen to be resistive/capacitive. 

The two plots 6-(e) and 6-(f) depict the locus diagrams 
of the winding’s input impedance over the frequency range   
0 ≤ f ≤ 100 kHz. They are parametric plots for the complex 

impedance as the frequency changes within these limits.  
The plot (e) illustrates the case of nonuniform winding while 
the second one shows the hypothetical case of a uniform 
winding of L(x) = 0.021mH. Each of the circles represents 
a combination of a series and parallel resonances. In both 
plots, there are little differences between the impedance 
magnitudes at the series resonance frequencies. In the base 
case of nonuniform inductance, the impedance magnitudes at 

(a) The Magnitude of both A and D

(b) The Magnitude of  B

(c) The Magnitude of C

Fig. 5. The magnitudes of the constants A, B and C for the different 16 
sections at 20 kHz.
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6 – (b)6 – (a)

6 – (d)6 – (c)

6 – (f)6 – (e)

Fig. 6. The winding’s input impedance versus the frequency for the case of isolated neutral
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the parallel resonance frequencies vary in four discrete steps 
between about 0.875 and 1.125 MΩ. In the case of uniform 
inductance, however, these differences in the impedance 
magnitudes are much smaller, as seen in plot 6-(e). 

2. Solidly-Earthed Neutral
Fig.7 depicts the results for the case of solidly-earthed 

neutral. The DC input impedance is seen from the curves as a 
pure resistance of about 2.2 Ω. This is equal to the previously 
assumed winding ohmic resistance R. The lowest resonance 
frequency is a parallel one close to 12 kHz. At very low 
frequencies, the winding exhibits an inductive imaginary part, 
which increases almost linearly with the angular frequency. 
The proportionality constant is about 25mH, which is close 
to the average value of the assumed inductance curve in 
Fig.2. This is clearly recognizable by inspecting the plot at 
the bottom giving the impedance magnitude over the low 
frequency range 0 ≤ f ≤ 1 kHz.

As shown by the plot 7-(f), the impedance magnitudes 
at the parallel resonance frequencies vary in five discrete 
steps between about 0.840 and 1.125 MΩ. Similar to plot 
6-(f) for isolated neutral, the differences in the impedance 
magnitudes are much smaller if the winding’s inductance is 
assumed uniform.

3. Inductively-Earthed Neutral
The plots given in Fig.8 illustrate the frequency 

characteristics of the winding if its neutral is earthed via 
a lossless Petersen coil of inductance 50 mH.  The value  
ZN(s) = 0.05 s  is substituted in the model equations. The 
first resonance (at about 5 kHz), which is a parallel one, 
occurs at a lower frequency compared to the previous case 
of solid earthing.                        

 The two locus plots 8-(d) and 8-(e) illustrate the winding’s 
input impedance over the frequency range 0 ≤ f ≤ 100 kHz 
with and without taking the inductance nonuniformity into 
account, respectively. In this case an additional parallel 
resonance of much larger input impedance (approximately 
4.2MΩ) can be recognized. The computed frequency of 
this anti-resonance is about 4.595 kHz. It is close to the 
parallel resonance frequency (4.152 kHz) of the winding’s 
approximate low frequency equivalent circuit.  It is composed 

7 – (a)

7 – (b)

7 – (c)

7 – (d)

7 – (e)
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of the earth capacitance Cg in parallel with the branch 
composed of the series connection of the winding resistance   
and the average total inductance of about (0.021+0.05) H. 

4. Resistively-Earthed Neutral
Results pertinent to the case of  the transformer winding 

with a 10-Ohm neutral resistance are illustrated by the plots 
of Fig.9. The lowest resonance is a parallel one occuring 
at about 11 kHz followed by a seies resonance frequency 

7 – (f)

Fig. 7. The winding’s input impedance as a function  of the frequency for 
solidly-earthed neutral.

8 – (c)

8 – (b)

8 – (a)

8 – (d)

8 – (e)

Fig. 8. Dependence of the winding’s input impedance on the frequency for 
inductively-earthed neutral via a lossless 50 mH Petersen coil.  
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close to 23 kHz . For DC, the plot of the real part indicates 
an input resistance of about 12.20 Ohms, as expected. As 
the impedance locus diagram 9-(c) indicates, the expected 
maximum impedance values at the parallel resonance 
frequencies are generally smaller than those of the other cases 
of neutral treatment. This is attributed to the increased ohmic 
dissipation introduced by the neutral resistance which leads 
to less selective resonances, i.e. of lower values of resonance 
quality factors.

By inspecting the above results for the different 
transformer’s neutral treatments, the magnitude of the input 
impedance ranges from a few Ohms at the series resonance 
frequencies to large values between  about 70 kΩ and 4.2 
MΩ at parallel resonance.

B. The Transient Response

This section is intended to demonstrate the application of 
the suggested approach to determine the transient response of 
the transformer winding to the switching of a voltage source.  
The internal resistance of the source is assumed Ri = 20Ω.The 
results will be given for both double-exponential impulse and 
step voltage sources expressed by e(t) in Fig.3. The transient 
response of the voltage v(x,t) and current i(x,t) at any point 
of co-ordinate x is computed using the Hosono algorithm 
for the numerical inverse Laplace transform, successfully 
applied in [5–9]. 1. Transients Due to a Double-Exponential Impulse 

Voltage
A voltage impulse of the following waveform is assumed 

for the source EMF, with t expressing the time in seconds:

 

6 610 10( ) ( )
68.5 0.405( ) 1037[ ]

t t

e t e e
− −

= −                
(7)

This equation, illustrated by the upper plot (a) of Fig.10, 
represents an impulse of a crest value 1000V, approximate 
front and tail times 1.5 and 50µsec, respectively.
Its Laplace transform E(s) is available in standard tables.
In the s-domain, the current and voltage at the transformer’s 
input terminal (I1 and V1 in Fig. 3, respectively) are given by:

1( ) ( ) / [ ( )]i inputI s E s R Z s= +
                  

(8)

1 1 1( ) ( ) . ( ) ( ). ( )i inputV s E s R I s I s Z s= − =
         (9)                             

The current I2 and voltage V2 at the junction between the 
two sections 1 and 2 in Fig.3 can then be derived from the 
equations

2 1 1 1 1I D I C V= −      

and                                                                                  (10)

2 1 1 1 1V A V B I= −

This can be successively repeated for the other sections. 
Due to the relatively large value of the assumed 

capacitance to ground, Cg , the initial value of the winding’s 
input impedance will be close to min / gL C

 
≈ 822 Ω, where 

Lmin is the inductance value at the terminal. The peak value of 
the current wave is therefore expected to be close to 1000V/ 

9 – (a)

9 – (c)

9 – (b)

Fig. 9. The winding’s input impedance as a function of the frequency for 
the transformer winding when resistively-earthed via a 10-Ohm neutral 
resistance. 
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(822 +20) Ω =1.19A, as can be seen in the plot Fig.10-(b) 
depicting the source current. The corresponding voltage drop 
across the source internal resistance Ri will be approximately 
44V, explaining the curve Fig.10-(c) of the source terminal 
voltage. The delay time of the equivalent line representing 
the winding will be close to

 average gL C    ≈ 20.85µsec. 
This agrees with the approximate time delay of about 2.606 
µsec. between the source EMF given by the plot 10-(a) 
and the current and voltage impulse waves prevailing at  
x = 0.125 per unit depicted in the two plots in Fig.10-(d) and 
10-(e), respectively. The approximate value of the line delay 
corresponds to a natural frequency of about 12 kHz. This 
is in full agreement with the above mentioned first parallel 
resonance frequency found for the case of solid earthing, as 
illustrated by Fig.7.   

The significance of taking the nonuniformity of the 
inductance distribution into account is illustrated by the plot 
10-(f) for the current i2(t) at x = 0.125 per unit computed 
for a similar hypothetical transformer winding having a 
uniform distribution constant L(x) = constant = the average 
inductance = 0.021 mH. This plot is to be compared with 
the corresponding one 10-(d) for the non-uniform winding. 
Neglecting the inductance nonuniformity yields a slower 
transient response with a 4% larger peak current. The 
instantaneous current at t = 20µsec. is seen to be 0.781A, 
also larger by about 15.7%. 

 (a) The source EMF

 (b) The source current i1(t) 

 (c)The source terminal voltage v1(t) 

  (d)The current i2(t) at x = 0.125 per unit

  (e)The voltage  v2(t) at x = 0.125 per unit

 (f) The current i2(t) at x = 0.125 per unit for a constant
          L(x) = 0.021 mH.

Fig. 10. The winding’s transients due to a 1000V double-exponential 
voltage impulse
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2. Transients Due to a Step Voltage
The two plots in Fig.11 illustrate the winding’s transient 

response to a source of a 1000V step EMF, i.e. e(t) = 1000 
u(t) and E(s) =1000/s. Again, they depict the current and 
voltage at x = 0.125 per unit over the extended time range  
0 ≤ t ≤ 800 µsec. The wave reflections at the short-circuited 
neutral point can be clearly recognized. They are manifested 
by simultaneous increases in the current and corresponding 
decreases in the voltage. The current goes asymptotically to 
its final value 1000/(20+2.2) ≈ 45A and the corresponding 
final value of the voltage at the same winding point is 
about 86.7V. The sharp voltage overshoot to about 1200V 
occurring 4µsec. after switching the source agrees well with 
the previously discussed plot 10-(e). 

IV. VALIDATION OF THE SOLUTION  
TECHNIQUE

The suggested procedure is validated by its application 
to a case of a non-uniform inductance distribution for which 
an exact analytical solution in the s-domain is available by 
using the software Mathematica. For simplicity, the case of 
a lossless winding is considered. The value zero is therefore 
assigned to the elements Go, R and Gs of the equivalent 
circuit. The voltage and current will be denoted V and I, 
respectively. Applying Kirchhoff’s laws and assuming zero 
time initial conditions, it follows:

. g
dI V sC
dx

= −
                              

(11)

and         

1.[ 1/ ( )]s
dV I sC sL x
dx

−= − +
                 

(12)

with the boundary conditions:
V(0) = E(s) for the terminal input voltage, and V(1) = 0 for 
the solidly-earthed neutral point.

A closed-form solution can be achieved if the following 
expression for the location-dependent inductance L(x) is 
assumed:

L(x) = a.bx                              (13)

The numerical values a = 0.014 Henries and b = 2 are 
substituted. 
For further details on the exact solution, the Mathematica 
documentation should be consulted [15].

The plots (a) and (b) of Fig. 12 depict the dependence 
of both the magnitude and the imaginary component of 
the winding’s input impedance over the frequency range  
0 ≤ f ≤ 70 kHz, respectively. Three parallel and three series 
resonance frequencies can be recognized. The parallel 
ones are close to 11.5, 36.5 and 61 kHz, whereas the series 

Fig. 11. The winding’s transients due to a 1000V step voltage. The neutral 
point is solidly-earthed.

(a) The current i2(t) at x = 0.125 per unit

(b) The voltage v2(t) at x = 0.125 per unit

 (a) The impedance magnitude

 (b) The imaginary part

Fig. 12. The magnitude and the imaginary part of the input impedance as 
obtained from the exact solution using Mathematica.
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resonances occur at the approximate values 24.5, 49 and 70 
kHz, respectively. The plot (b) indicates the frequency ranges 
over which the imaginary part is inductive or capacitive. 
Since the winding is assumed lossless, the impedance angle 
can be either +π/2 or –π/2. 

The information in Fig. 12 should be compared with the 
corresponding results given by the plots 13-(a) and 13-(b) 
obtained using the here suggested technique with m = 16 
sections. A good agreement can be easily observed for the 
considered frequency range. 

The second validation test will deal with some results in 
the time domain. Here, the transient response of the lossless 
winding described by Eq. (13), as obtained using both the 
exact as well as the suggested procedure will be compared. 
The considered time range is 0 ≤ t ≤ 6000 µsec. The source 
internal resistance of the 1000V step voltage source is 20Ω, 
leading to a steady state current of 50A, as both current plots 
(a) and (c) indicate. It is noticed that both curves are almost 
identical. The same can be said about the two curves (b) and 
(d) for the terminal voltage. Both go asymptotically to the 
expected final value of zero. The results are close to those 
of a RL–series circuit. The time constant is approximately   
(Laverage / Rseries) ≈ 0.021H/20Ω ≈ 1050µsec. It should be 
noted that the four plots of Fig.14 include superimposed high 

           (a) The imaginary part

(b) The impedance angle

Fig. 13. The imaginary part and the angle of the input impedance as obtained 
using the suggested procedure.

(a) The source current, from the exact solution using Mathematica.

(b) The voltage at the source terminals, from the exact solution using 
Mathematica.

(c) The source current, from the suggested method.

frequency oscillations of very small amplitudes, similar to 
those in Figs. 10 and 11. 

V. CONCLUSIONS

—— A method is suggested for the transient and frequency 
analysis of transformer windings, taking into account the 
non-uniform distribution of its series inductance. 

—— The winding is replaced by a number of cascade 
connected sections. Each section is represented in the 
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Laplace s-domain by an equivalent long line. The exact 
long line theory is applied to determine the section’s 
ABCD generalized circuit constants. They are generally 
not equal for the different sections.

—— Analytical expressions for the winding’s input impedance 
as well as for the voltage and current distributions as 
functions of the complex frequency are derived. The 
different treatments of the transformer’s neutral point are 
considered. The frequency characteristics are discussed 
with special emphasis on the resonance phenomena.

—— By applying an algorithm for the numerical inverse 
Laplace transform, the winding’s time response for 
different source voltage waveforms is presented.

—— The suggested approach is validated by comparing the 
results of its application to the corresponding ones of 
a case study for which exact analytical solutions are 
available. An agreement of both the frequency and 
transient responses is observed.  

—— The method can be easily extended in order to deal with 
eventual nonuniformities of other winding’s equivalent 
circuit parameters.
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(d) The voltage at the source terminals, using the suggested procedure.

Fig. 14. A comparison of the winding transients resulting from both the exact 
solution using Mathematica (Plots a  and  b for the current and voltage, 
respectively) and through the application of the proposed technique (Plots 
c and d for the current and voltage, respectively).


