Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To understand the underwater explosion (UNDEX) performance of RDX/AP-based aluminized explosives, six formulations of the explosives were prepared, with Al content varying from 30% to 55% and ammonium perchlorate (AP) content from 45% to 20%. A series of UNDEX tests that used a 1 kg cylindrical charge was conducted underwater at a depth of 4.7 m. The pressure histories of the shock wave produced at different positions and the bubble periods were measured. The coefficients of the similarity law equation for the shock wave parameters were fitted with experimental data. The effect of the aluminum/oxygen (Al/O) ratio on the performance of the energy output structure for RDX/AP-based aluminized explosives is discussed. The bubble motion during UNDEX was simulated using MSC.DYTRAN software, and the radius-time curves of the bubbles were determined. The results show that AP influences the detonation reaction mechanism of RDX/AP-based aluminized explosives, which causes different UNDEX performances. The bubble energy of the RDX/AP-based aluminized explosive was higher than that of RDX-based and HMX-based aluminized explosives.
Słowa kluczowe
Rocznik
Tom
Strony
60--76
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing,100081, P. R. China
autor
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing,100081, P. R. China
autor
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing,100081, P. R. China
autor
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing,100081, P. R. China
Bibliografia
- [1] Cole, R. H. Underwater Explosions. Princeton University Press, New Jersey, 1948; ISBN 9780691069227.
- [2] Gogulya, M. F.; Makhov M. N.; Dolgoborodov, A. Y.; Brazhnikov, M. A.; Arkhipov, V. I.; Shchetinin V. G. Mechanical Sensitivity and Detonation Parameters of Aluminized Explosives. Combust. Explos. Shock Waves (Engl. Transl.) 2004, 40(4): 445-457.
- [3] Mader, C. L. Numerical Modeling of Detonations. Berkeley, University of California Press, 1979.
- [4] Hobbs, M. L.; Baer, M. R. Calibrating the BKW-EOS with a Large Product Species Database and Measured C-J Properties. Proc.10th (Int.) Symp. Detonation, Boston, MA, USA, 1993, 409-418.
- [5] Keshavarz, M. H.; Teimuri, M. R.; Esmail, P. K.; Shokrollahi, A.; Zali, A.; Yousefi, M. H. Determination of Performance of Non-ideal Aluminized Explosives. J. Hazard. Mater. A 2006, 137: 83-87.
- [6] Keshavarz, M. H.; Motamedoshariati, R. H.; Moghayadnia, R.; Nazari, H. R.; Azarniamehraban, J. A New Computer Code to Evaluate Detonation Performance of High Explosives and Their Thermochemical Properties, Part I. J. Hazard. Mater. 2009, 172: 1218-1228.
- [7] Pei, H. B.; Nie, J. X.; Jiao, Q. J. Study on the Detonation Parameters of Aluminized Explosives Based on a Disequilibrium Multiphase Model. Cent. Eur. J. Energ. Mater. 2014, 11(4): 491-500.
- [8] Keshavarz, M. H.; Zamani, A. A Simple and Reliable Method for Predicting the Detonation Velocity of CHNOFCl and Aluminized Explosives. Cent. Eur. J. Energ. Mater. 2015, 12(1): 13-33.
- [9] Cichra, D. A., Doherty, R. M. Estimation of Performance of Underwater Explosives. Proc.10th (Int.) Symp. Detonation, Portland, OR, USA, 1989, 33-39.
- [10] Swisdak, M. M. Explosion Effects and Proper-ties. Part II. Explosion Effects in Water. Report No. ADA056694, U.S. Naval Surface Weapons Center White Oak Lab, Silver Spring, MD, 1978.
- [11] Stromsoe, E.; Eriksen, S. Performance of High Explosives in Underwater Applications. Part 2: Aluminized Explosives. Propellants Explos. Pyrotech. 1990, 15: 52-53.
- [12] Adapaka, S. K.; Vepakomma, B. R.; Rabindra, K. S.; Alapati, S. R. Evaluation of Plastic Bonded Explosive (PBX) Formulations Based on RDX, Aluminum, and HTPB for Underwater Applications. Propellants Explos. Pyrotech. 2010, 35: 359-364.
- [13] Wang, L. Q.; Wang, N. F.; Zhang, L. Study on Key Factors Affecting Energy Output of Emulsion Explosives in Underwater Explosion. Propellants Explos. Pyrotech. 2012, 37: 83-92.
- [14] Bocksteiner, G. Evaluation of Underwater Explosion Performance of PBXW- 115(AUST). Report No. DSTO-TR-0279, Australia, Weapon Systems Division Aeronautical and Maritime Research Laboratory, VIC, 1996.
- [15] Lu, J. P.; Kennedy, D. L. Modelling of PBXW-115 Using Kinetic CHEETAH and the DYNA Codes. Report No. DSTO-TR-1496, Australia, Weapons Systems Division Systems Sciences Laboratory, SA, 2003.
- [16] Satyavratan, P. V.; Vedam, R. Some Aspects of Underwater Testing Method. Propellants Explos. Pyrotech. 1980, 5: 62-66.
- [17] Gaspin, J. B. Depth Scaling of Underwater Explosion Source Levels. Report No. ADA020473, U.S. Naval Surface Warfare Center, MD, 1975.
- [18] Xiang, D. L.; Rong, J. L.; Li, J.; Feng, X. J.; Wang, H. The Effect of Al/O Ratio on Detonation Performance and Underwater Explosion of RDX-based Aluminized Explosive (in Chinese), ACTA Armamentarii 2013, 34(1): 1296-1301.
- [19] Xiang, D. L.; Rong, J. L.; Li, J. Effect of Al/O Ratio on the Detonation Performance and Underwater Explosion of HMX-based Aluminized Explosives. Propellants Explos. Pyrotech. 2014, 39: 65-73.
- [20] Li, J.; Rong J. L. Bubble and Free Surface Dynamics in Shallow Underwater Explosion. Ocean Eng. 2011, 38: 1861-1868.
- [21] Klaseboer, E.; Hung, K. C.; Wang, C.; Wang, C. W.; Khoo, B. C.; Boyce, P.; Debono, S.; Charlier, H. Experimental and Numerical Investigation of the Dynamics of an Underwater Explosion Bubble Near a Resilient/Rigid Structure. J. Fluid Mech. 2005, 537: 387-413
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ef8bf00-9eb7-441c-af08-e1e54e4c1455