PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ionospheric Response to the Acoustic Gravity Wave Singularity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An original model of atmospheric wave propagation from ground sources to the ionosphere in the atmosphere with a realistic high-altitude temperature profile is analyzed. Shaping of a narrow domain with elevated pressure in the resonance region where the horizontal phase wave velocity is equal to the sound velocity is examined theoretically within the framework of linearized Eq.s. Numerical simulations for the model profiles of atmospheric temperature and viscosity confirm analytical result for the special feature of wave fields. The formation of the narrow domain with plasma irregularities in the D and low E ionospheric layers caused by the acoustic gravity wave singularity is discussed.
Czasopismo
Rocznik
Strony
319--328
Opis fizyczny
Bibliogr. 14 poz., wykr.
Twórcy
autor
  • National Research University, Higher School of Economics, Nizhny Novgorod, Russia
  • Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
Bibliografia
  • [1] Bespalov, P.A., and O.N. Savina (2012), Possibility of magnetospheric VLF response to atmospheric infrasonic waves, Earth Planets Space, 64, 6, 451-458, DOI: 10.5047/eps.2011.05.024.
  • [2] Blanc, E. (1985), Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: A summary, Ann. Geophys. 3, 6, 673-687.
  • [3] Erukhimov, L.M., and O.N. Savina (1980), The role of small-scale irregularities in the formation of radio reflections from the mid-latitude sporadic E layer, Ionosfer. Issled. 30, 80-86 (in Russian)..
  • [4] Fatkullin, M.N., K.N. Vasilev, T.I. Zelenova, and O.N. Savina (1985), The E-scattering phenomenon in the midlatitude ionosphere, Geomagn. Aeron. 25, 388-393 (in Russian).
  • [5] Francis, S.H. (1975), Global propagation of atmospheric gravity waves: A review, J. Atmos. Terr. Phys. 37, 6-7, 1011-1054, DOI: 10.1016/0021-9169(75) 90012-4.
  • [6] Gershman, B.N. (1974), Dynamics of the Ionospheric Plasma, Nauka, Moscow, 256 pp. (in Russian).
  • [7] Gossard, E.E., and W.H. Hooke (1975), Waves in the Atmosphere. Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation, Elsevier Sci. Publ. Co., Amsterdam, 456 pp.
  • [8] Hedin, A.E. (1991), Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res. 96, A2, 1159-1172, DOI: 10.1029/ 90JA02125.
  • [9] Kikoin, I.K. (ed.) (1976), Tables of Physical Quantities. Handbook, Atomizdat, Moscow (in Russian).
  • [10] Lighthill, J. (1978), Waves in fluids, Cambridge University Press, Cambridge.
  • [11] Lund, T.S., and D.C. Fritts (2012), Numerical simulation of gravity wave breaking in the lower thermosphere, J. Geophys. Res. 117, D21, 105, DOI: 10.1029/ 2012JD017536.
  • [12] Rapoport, V.O., P.A. Bespalov, N.A. Mityakov, M. Parrot, and N.A. Ryzhov (2004), Feasibility study of ionospheric perturbations triggered by monochromatic infrasonic waves emitted with a ground-based experiment, J. Atmos. Sol.- Terr. Phys. 66, 12, 1011-1017, DOI: 10.1016/j.jastp.2004.03.010.
  • [13] Savina, O.N. (1996), Acoustic-gravity waves in an atmosphere with a realistic temperature distribution, Geomagn. Aeron. 36, 218-224.
  • [14] Savina, O.N., and P.A. Bespalov (2014), Filtering features of long acoustic-gravity waves in a windless atmosphere, Radiophys. Quantum Electr. 57, 2, 117-124, DOI: 10.1007/s11141-014-9497-6
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ef7e5cc-2a6e-45b1-9f7d-5dd7722db0c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.