PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of variational and fem methods to the modelling and numerical analysis of the slitting process for geometrical and physical nonlinearity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Finite element modelling provides a great deal of support in the understanding of technological processes. However, there are few studies of the slitting process, and those that exist are simplified for use only in the calculation of steady states of such processes. This paper proposes the application of variational and finite element methods for the analysis of slitting and the nonlinearities of this process. Physical and mathematical models of the process and a new thermo-elastic/thermo-visco-plastic material model are elaborated. The procedure is implemented in the finite element code ANSYS/LS-DYNA and the model is validated comparing the numerical and experimental results. The influence of various process conditions on the strain and stress states and the quality of the final product are analysed. The results lay the groundwork for further study regarding the numerical analysis of spring-back behaviour and the effect of tool elasticity on the quality of the final workpiece.
Rocznik
Strony
487--500
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Koszalin University of Technology, Koszalin, Poland
autor
  • Koszalin University of Technology, Koszalin, Poland
Bibliografia
  • 1. Aggarwal S., Bhushan B., Katsube N., 2005, Three-dimensional finite element analysis of the magnetic tape slitting process, Journal of Materials Processing Technology, 170, 71-88
  • 2. Bathe K.J., 1982, Finite Element Procedures In Engineering Analysis, Prentice-Hall, Englewood Cliffs, N.J.
  • 3. Bohdal L., Kukielka L., 2006, The effect of selected material parameters on the stress and strain states in the process of cutting a sheet plate with circular cutters, Task Quarterley, 4, 391-400
  • 4. Bohdal, L., Kukielka L., 2013, The modeling and numerical analysis of the shearing process with the regard of the geometrical and physical nonlinearity, Ecological Aspects of Applying New Technologies in Transport, 131-140
  • 5. Bollen D., Deneir J., Aernoudt E., Muylle W., 1989, Shear cutting of PET film, Journal of Material Science, 24, 2957-2966
  • 6. Gałęzia A., Gontarz S., Jasiński M., Mączak J., Radkowski S., Seńko J., 2012, Distributed system for monitoring of the large scale infrastructure structures based on analysis of changes of its static and dynamic properties, Key Engineering Materials, 518, 106-118
  • 7. Gąsiorek D., 2013a, Modelling And Experimental Investigation Of Dynamic Processes Occurring During Cutting Lithograpic Plates Using Guillotines (in Polish), Wydawnictwo Politechniki Śląskiej, Gliwice
  • 8. Gąsiorek D., 2013b, The application of the smoothed particle hydrodynamics (SPH) method and the experimental verification of cutting of sheet metal bundles using a guillotine, Journal of Theoretical and Applied Mechanics, 51, 4, 1053-1065
  • 9. Gontarz S., Radkowski S., 2012, Impact of various factors on relationships between stress and eigen magnetic field in a steel specimen, IEEE Transactions on Magnetics, 48, 3, 1143-1154
  • 10. Khadke A., Ghosh S., Li M., 2005, Numerical simulations and design of shearing process for aluminum alloys, ASME Journal Manufacturing Science Engineering, 127, 3, 612-621
  • 11. Kleiber M., 1985, Finite Element Method in Non-Linear Solid Mechanics, IPPT PAN, PWN, Warsaw-Poznań
  • 12. Kukielka L., Geleta K., Kukielka K., 2012, Modelling of initial and boundary problems with geometrical and physical nonlinearity and its application in burnishing processes, Steel Research International, Special Edition, 14th International Conference on Metal Forming, 1375-1378
  • 13. Kulakowska A., Kukielka L., 2008, Numerical analysis and experimental researches of burnishing rolling process with taking into account deviations in the surface asperities outline after previous treatment, Steel Research International, 2, 42-48
  • 14. Liu C., Lu H., Huang Y., 2005, Dynamic steady-state stress field in a web during slitting, ASME Journal Applied Mechanics, 72, 157-164
  • 15. Lu H., Wang B., Iqbal J., 2001, Deformation in shear slitting of polymeric webs, Proceedings of the 6th International Conference on Web Handling, Stillwater, OK, June 10-13, 389-402
  • 16. Ma J., Lu H., Li M., Wang B., 2006, Burr height in shear slitting of aluminum webs, ASME Journal Manufacturing Science Engineering, 128, 46-55
  • 17. Meehan R. R., Burns S. J., 1998, Mechanics of slitting and cutting webs, Experimental Mechanics, 38, 2, 103-109
  • 18. Orłowska M., Czapp M., 2012, Numerical analysis of heat efficiency of the convective heat exchanger build with horizontal plates, Annual Set The Environment Protection, 14, 582-586
  • 19. Patyk R., Kukielka L., 2008, Optimization of geometrical parameters of regular triangular asperities of surface put to smooth burnishing, Steel Research International, 2, 642-647
  • 20. Saanouni K., 2006, Virtual metal forming including the ductile damage occurrence. Actual state of the art and main perspectives, Journal of Materials Processing Technology, 177, 19-25
  • 21. Wisselink H.H., 2000, Analysis of guillotining and slitting: finite element simulations, Ph.D. Thesis, University of Twente, The Netherlands
  • 22. Wisselink, H. H., Hu´etink J., 2004, 3D FEM simulation of stationary metal forming processes with applications to slitting and rolling, Journal of Materials Processing Technology, 148, 328-341
  • 23. Xue L., Wierzbicki T., 2013, Verification of a new fracture criterion using LS-DYNA, 9th International LS-DYNA Users Conference, Simulation Technology, 3, 13-22
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ef72967-619b-48cf-84f5-f1c14379779a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.