Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the presented work, two multicomponent Cr25Zr25Co20Mo15Si10Y5 and Cr25Co25Zr20Mo15Si10Y5 alloys were produced from bulk chemical elements using the vacuum arc melting technique. X-ray diffraction phase analysis was used to determine the phase composition of the obtained materials. Microstructure analysis included scanning electron microscopy and energy dispersive X-ray spectroscopy techniques. The studies revealed the presence of multi-phase structures in both alloys. Elemental distribution maps confirmed the presence of all six alloying elements in the microstructure. The segregation of chemical elements was also observed. Microhardness measurement revealed that both alloys exhibited microhardness from 832(27) to 933(22) HV1.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1143--1149
Opis fizyczny
Bibliogr. 38 poz., fot., rys., tab.
Twórcy
autor
- University of Silesia in Katowice, Institute of Materials Engeenering, Chorzów, Poland
autor
- University of Silesia in Katowice, Institute of Materials Engeenering, Chorzów, Poland
- University of Hradec Králové, Department of Physics, Hradec Králové, Czech Republic
autor
- University of Silesia in Katowice, Institute of Materials Engeenering, Chorzów, Poland
autor
- University of Silesia in Katowice, Institute of Materials Engeenering, Chorzów, Poland
autor
- University of Silesia in Katowice, Institute of Materials Engeenering, Chorzów, Poland
autor
- University of Silesia in Katowice, Institute of Materials Engeenering, Chorzów, Poland
autor
- University of Silesia in Katowice, Institute of Materials Engeenering, Chorzów, Poland
Bibliografia
- [1] J.W. Yeh, High-Entropy Alloys: Fundamentals and Applications, Springer International Publishing (2016).
- [2] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A, (2004). DOI: https://doi.org/10.1016/j.msea.2003.10.257
- [3] J.W. Yeh et al., Adv. Eng. Mater. (2004). DOI: https://doi.org/10.1002/adem.200300567.
- [4] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science (2014). DOI: https://doi.org/10.1126/science.1254581
- [5] W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw Prog. Mater. Sci. (2021). DOI: https://doi.org/10.1016/j.pmatsci.2021.100777
- [6] W. Yang, S. Pang, Y. Liu, Q. Wang, P.K. Liaw, T. Zhang, Intermetallics (2021). DOI: https://doi.org/10.1016/j.intermet.2021.107421
- [7] C.H. Chen, Y.J. Chen, Scr. Mater. (2019). DOI: https://doi.org/10.1016/j.scriptamat.2018.11.023
- [8] K. Glowka et al., Arch. Metall. Mater. (2019). DOI: https://doi.org/10.24425/amm.2019.127603
- [9] K. Glowka et al. Arch. Metall. Mater. (2019). DOI: https://doi.org/10.24425/amm.2019.127614
- [10] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. (2008). DOI: https://doi.org/10.1002/adem.200700240
- [11] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today, (2016). DOI: https://doi.org/10.1016/j.mattod.2015.11.026
- [12] A. Inoue, Acta Mater. (2000). DOI: 10.1016/S1359-6454(99)00300-6
- [13] R. Fulchiron, I. Belyamani, J. U. Otaigbe, V. Bounor-Legaré, Sci. Rep. (2015). DOI: https://doi.org/10.1038/srep08369
- [14] A.A. Shirzadi, T. Kozieł, G. Cios, P. Bała, J. Mater. Process. Technol. (2019). DOI: https://doi.org/10.1016/j.jmatprotec.2018.09.028
- [15] R.C. Budhani, T.C. Goel, K.L. Chopra, Bull. Mater. Sci. (1982). DOI: https://doi.org/10.1007/BF02824962
- [16] J.K. Carpenter P.H. Steen, J. Mater. Sci. (1992). DOI: https://doi.org/10.1007/BF00553859.
- [17] L. Xiao, Z. Zheng, P. Huang, F. Wang, Scr. Mater. (2022). DOI: https://doi.org/10.1016/j.scriptamat.2021.114454
- [18] S. Li, T. Yamaguchi, Surf. Coatings Technol. (2022). DOI: https://doi.org/10.1016/j.surfcoat.2022.128123
- [19] M. Cai, Q. Luo, Q. Zeng, B. Shen, J. Magn. Magn. Mater. (2021). DOI: https://doi.org/10.1016/j.jmmm.2021.167817
- [20] P. Hruška et al., J. Alloys Compd. (2021). DOI: https://doi.org/10.1016/j.jallcom.2020.157978
- [21] C. Xie et al., J. Non. Cryst. Solids. (2019). DOI: https://doi.org/10.1016/j.jnoncrysol.2019.03.039
- [22] A. Chrobak, M. Karolus, G. Haneczok, Solid State Phenom. (2010. DOI: https://doi.org/10.4028/www.scientific.net/SSP.163.233
- [23] Y. Zhang et al., Prog. Mater. Sci. (2014). DOI: https://doi.org/10.1016/j.pmatsci.2013.10.001.
- [24] K. Glowka et al., Metals (Basel). (2020). DOI: https://doi.org/10.3390/met10111456
- [25] X. Yang, Y. Zhang, Mater. Chem. Phys. (2012). DOI: https://doi.org/10.1016/j.matchemphys.2011.11.021
- [26] T. Thandorn, P. Tsakiropoulos, Materials (Basel) (2021). DOI: https://doi.org/10.3390/ma14247615
- [27] P. Novák, Z. Barták, K. Nová, F. Průša, Materials (Basel) (2020). DOI: https://doi.org/10.3390/ma13030800
- [28] X.J. Jiang et al., Mater. Lett. (2022). DOI: https://doi.org/10.1016/j.matlet.2021.131131
- [29] B. Chanda, J. Das, J. Alloys Compd. (2022). DOI: https://doi.org/10.1016/j.jallcom.2022.163610
- [30] Y. Liu et al., J. Alloys Compd. (2017). DOI: https://doi.org/10.1016/j.jallcom.2016.10.014
- [31] J.M.S. de Sousa, A. de S.P. Pereira, M. Pereira, R.G.N. Silva, J. Laser Appl. (2020). DOI: https://doi.org/10.2351/7.0000099
- [32] K. Glowka et al. Materials (Basel) (2022). DOI: https://doi.org/10.3390/ma15010393
- [33] T. Nagase, M. Todai, P. Wang, S.-H. Sun, T. Nakano, Mater. Chem. Phys. (2022). DOI: https://doi.org/10.1016/j.matchemphys.2021.125409
- [34] P. Tunthawiroon, A. Chiba, IOP Conf. Ser. Mater. Sci. Eng. (2019). DOI: https://doi.org/10.1088/1757-899X/635/1/012006
- [35] S.-S. Ahn et al., Materials (Basel) (2018). DOI: https://doi.org/10.3390/ma11112150
- [36] L. Giersberg, B. Milkereit, C. Schick, O. Kessler, Mater. Sci. Forum (2014). DOI: https://doi.org/10.4028/www.scientific.net/MSF.794-796.939
- [37] R. Liu, J. Yao, Q. Zhang, M.X. Yao, R. Collier, J. Eng. Mater. Technol. (2016). DOI: https://doi.org/10.1115/1.4034075
- [38] L.J. Zhang et al., Mater. Sci. Eng. A, (2018). DOI: https://doi.org/10.1016/j.msea.2018.04.058
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ef72444-66ba-4354-a76f-d4426c63b078