PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental identification of cracked rotor system parameters from the forward and backward whirl responses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, an experimental investigation of a transverse fatigue crack has been carried out. A mathematical modelling of cracked rotor system along with the measured vibration is used to find crack parameters that not only detect the fault but also quantify it. Many experimental studies on cracks considered the crack as a slit or notch, which remains open. However, such flaws do not mimic a fatigue crack behavior, in which crack front opens and closes (i.e., breathes in a single revolution of the rotor). The fatigue crack in rotors commonly depicts 2× frequency component in the response, as well as higher frequency components, such as 3×, 4× and so on. In rotors, both forward and backward whirling take place due to asymmetry in rotor, and thus the fatigue crack gives the forward and backward whirl for all such harmonics. A rotor test rig was developed with a fatigue crack in it; rotor motions in two orthogonal directions were captured from the rig at discrete rotor angular speeds using proximity probes. The directional-spectrum processing technique has been utilized to the measured displacements to get its forward and backward whirl components. Subsequently, it is executed in a mathematical model-based estimation procedure to obtain the crack forces, residual unbalances, and remaining rotor system unknown variables. Estimation of crack forces during rotation of the shaft gives its characteristics, which can be used further to develop newer crack models.
Rocznik
Strony
329--353
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781039, India
autor
  • Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781039, India
Bibliografia
  • [1] Y. Ishida. Cracked rotors: Industrial machine case histories and nonlinear effects shown by a simple Jeffcott rotor. Mechanical Systems and Signal Processing, 22(4):805–817, 2008. doi: 10.1016/j.ymssp.2007.11.005.
  • [2] G. Sabnavis, R.G. Kirk, M. Kasarda, and D. Quinn. Cracked shaft detection and diagnostics: a literature review. The Shock and Vibration Digest, 36(4):287–296, 2004. doi: 10.1177/0583102404045439.
  • [3] N. Dharmaraju, R.Tiwari, and S. Talukdar. Identification of an open crack model in a beam based on force-response measurements. Computers & Structures, 82(2-3):167–179, 2003. doi: 10.1016/j.compstruc.2003.10.006.
  • [4] A.S. Sekhar. Crack identification in a rotor system: a model-based approach. Journal of Sound and Vibration, 270(4-5):887–902, 2004. doi: 10.1016/S0022-460X(03)00637-0.
  • [5] A.C. Chaselevris and C.A. Papodopoulos. Experimental detection of an early developed crack in rotor-bearing system using an AMB. Third International Conference of Engineering against Failure, June 26–28, 2013, Kos, Greece.
  • [6] P. Gudmundson. The dynamic behaviour of slender structures with cross-sectional cracks. Journal of the Mechanics and Physics of Solids, 31(4):329–345, 1983. doi: 10.1016/0022- 5096(83)90003-0.
  • [7] C.A. Papadopoulos and A.D. Dimarogonas. Stability of the cracked rotors in the coupled vibration mode. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 110(3):356– 359, 1988.
  • [8] A.K. Darpe, K. Gupta, and A. Chawla. Experimental investigations of the response of a cracked rotor to periodic axial excitation. Journal of Sound and Vibration, 260(2):265–286, 2003. doi: 10.1016/S0022-460X(02)00944-6.
  • [9] T. Zhou, Z. Sun, J. Xu, and W. Han. Experimental analysis of cracked rotor. Journal of Dynamic systems, Measurement, and Control, 127(3):313–320, 2005. doi: 10.1115/1.1978908.
  • [10] P. Pennacchi, N. Bachschmid, and A. Vania. A model-based identification method of transverse cracks in rotating shafts suitable for industrial machines. Mechanical Systems and Signal Processing, 20(8):2112–2147, 2006. doi: 10.1016/j.ymssp.2005.04.005.
  • [11] J.K. Sinha. Higher order spectra for crack and misalignment identification in the shaft of a rotating machine. Structural Health Monitoring, 6(4):325–334, 2007. doi: 10.1177/1475921707082309.
  • [12] Z. Cai. Vibration diagnostics of elastic shafts with a transverse crack. Master Thesis, Faculty of Computing, Health and Science, Edith Cowan University, Perth, Australia 2011.
  • [13] S.K. Singh and R. Tiwari. Detection and localization of multiple cracks in a shaft system: An experimental investigation. Measurement, 53:182–193, 2014. doi: 10.1016/j.measurement.2014.03.028.
  • [14] D. Southwick. Using full spectrum plots: Part 2. Orbit, 15(2):10–16. 1994.
  • [15] P. Goldman and A. Muszynska. Application of full spectrum to rotating machinery diagnostics. Orbit, 17–21, 1999.
  • [16] J. Tuma, and J. Bilos. Fluid induced instability of rotor systems with journal bearings. Engineering Mechanics, 14(1-2):69–80, 2007.
  • [17] T.H. Patel and A.K. Darpe. Application of full spectrum analysis for rotor fault diagnosis. In: IUTAM Symposium on Emerging Trends in Rotor Dynamics, 1011:535–545, 2011.
  • [18] C. Shravankumar and R. Tiwari. Detection of fatigue crack in a rotor system using full-spectrum based estimation. Sadhana, 41(2):239–251, 2016. doi: 10.1007/s12046-015-0452-9.
  • [19] C. Shravankumar and R. Tiwari. Model-based crack identification using full-spectrum. In Proceedings of the ASME 2013 Gas Turbine India Conference, Bangalore, Karnataka, India, December 5–6, 2013. doi: 10.1115/GTINDIA2013-3756.
  • [20] C. Shravankumar and R. Tiwari. Identification of stiffness and periodic breathing forces of a transverse switching crack in a Laval rotor. Fatigue and Fracture of Engineering Materials and Structures, 36(3):254–269, 2012. doi: 10.1111/j.1460-2695.2012.01718.x.
  • [21] C. Shravankumar, R. Tiwari, and A. Mahibalan. Experimental identification of rotor crack forces. In: Proceedings of the 9th IFToMM International Conference on Rotor Dynamics: pp. 361–371, 2015. doi: 10.1007/978-3-319-06590-8_28.
  • [22] X.B. Rao, Y.D. Chu, Y.X. Chang, J.G. Zhang, and Y.P. Tian. Dynamics of a cracked rotor system with oil-film force in parameter space. Nonlinear Dynamics, 88(4):2347–2357, 2017. doi: 10.1007/s11071-017-3381-9.
  • [23] B.C. Wen and Y.B.Wang. Theoretical research, calculation and experiments of cracked shaft dynamical responses. In Proceedings of International Conference on Vibration in Rotating Machinery, pp. 473–478, London, UK, 1988.
  • [24] Prashant Kumar. Elements of Fracture Mechanics. Wheeler Publishing, New Delhi, 1999.
  • [25] M.G. Maalouf. Slow-speed: vibration signal analysis. Orbit, 27(2):4–16, 2007.
  • [26] R. Tiwari. Rotor Systems: Analysis and Identification. CRC Press, USA, 2017. doi: 10.1201/9781315230962.
  • [27] L.G.G. Villani, S. da Siva, and A. Cunha Jr. Damage detection in uncertain nonlinear systems based on stochastic Volterra series. Mechanical Systems and Signal Processing, 125:288–310, 2019. doi: 10.1016/j.ymssp.2018.07.028.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ef3d12a-3179-455b-b2db-dc5df9ed1db2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.