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Abstract. We generalize certain well known orthogonal decompositions of model
spaces and obtain similar decompositions for the wider class of shifted model spaces,
allowing us to establish conditions for near invariance of the latter with respect to
certain operators which include, as a particular case, the backward shift S*. In doing so,
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with this, we prove some results on model spaces which are of independent interest.
We show moreover how the invariance properties of the kernel of an operator T, with
respect to another operator, follow from certain commutation relations between the
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1. INTRODUCTION

Let 6 be an inner function, i.e., § € H*(D) with |§] = 1 a.e. on T, and let H? denote
the Hardy space of the unit disk, H? = H*(D).
The model space Ky associated with 6 is defined by

Ky =H} ©0H?. (1.1)

Model spaces and operators defined on them have attracted enormous attention for
their properties and applications (see for example [7]) and the references therein).
It is well known that the class of model spaces coincides with the class of all proper
invariant subspaces of H i for

§* = PzP* |, (1.2)

where PT denotes the orthogonal projection from L? := L?(T) onto Hi Another well
known property of model spaces is that if « is an inner function dividing 6, which
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we denote by a < 6, meaning that g € H*® := H* (D), then Ky admits two orthogonal
decompositions:

Kg=K,®aKo, Ko=Ko ®LK,. (1.3)

One can look at those orthogonal sums as describing the behaviour of different parts
of Ky, in particular certain invariance properties, with respect to multiplication by &
and o (Mg and M,, respectively). Indeed, regarding the first decomposition in (1.3),
and denoting

H? = zH2 = [*© H?, (1.4)
we have that

aK,n Ky = {0}, with aK,c H?, and a(aKs)=Ko c Ky (1.5)

while, regarding the second decomposition in (1.3),

aKe c Ko and a(ZKa) =0K.n Ko ={0} with a(ZK.)cOH]. (1.6)
So we see that one of the terms on the right hand side of each of the decompositions (1.3)
“stays” in Ky after multiplication by & or « (depending on the decomposition), while
the other terms are mapped into a space which is disjoint from Ky, and either “goes’
to H? or to 0H?.

Taking this perspective enables us to generalize (1.3) and obtain similar decom-
positions when o does not divide 6, by looking at the model space Ky as a Toeplitz
kernel, Ky = ker Ty, where

)

T, =P gP"|y2, forgelL®”, (1.7)

(the symbol g will be always identified with M, the multiplication operator by g) and
asking which elements of this kernel are mapped into the same space by Mg or M,.

Thus in Section 2 we generalize the decompositions (1.3) to include the case where
« does not divide # and we study their relation with the usual conjugation on the
model space Kjy. In Section 3 we use some of those results to obtain orthogonal
decompositions for the wider class of shifted model spaces and we establish conditions
for near invariance of the latter with respect to certain operators which include, as
a particular case, the backward shift S*. In doing so, we illustrate the usefulness of
obtaining appropriate decompositions and, in connection with this, we prove some
results on model spaces which are of independent interest. In Section 4 we consider the
particular case of shifted model spaces of the form zKy and apply the previous results
to study the relations between Ky and its images by the shift S and the backward
shift S*, to answer the question when is S* Ky exactly equal to Ky and to describe
the orthogonal projections from L? onto the kernels of a particular type of Toeplitz
operators. Finally, in Section 5 we study how the invariance properties of the kernel
of an operator T', with respect to another operator, follow from certain commutation
relations between the two operators involved.
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2. MODEL SPACES AND ORTHOGONAL DECOMPOSITIONS

We will use here the following notation. Let H be a Hilbert space, H and M be closed
subspaces of H with M < H < H, and let X € B(#H). Then we define

Mx={feM: XfeMj (2.1)
We use the notation [f] := span{f}.
Proposition 2.1. Let 0 and « be inner functions. Then
(Kg)a = (kerTg)a = ker Téa’ (K@)@ = (keI‘Tg)@ = akerTga. (22)

Proof. Note that f,af € ker Ty if and only if f € HZ, Of = f_e H?,Qaf =h_ e H?.
This is equivalent to f € H2, faf = h_ € H2, i.e., f € ker Tp,,.

Since f € (kerTj)s if and only if af € (kerTp)q,, it follows that (kerTj)s =
akerTy,. O

There is a relation between the spaces in the first and the second sets of equalities
in (2.2), given by the usual conjugation Cp on Ky, defined by

Cof = 0zf. (2.3)
Proposition 2.2. Let 0 and « be inner functions. Then
Co(Kp)a = (Ko)a (2.4)
Proof. For f e Ky, we have that
f e Colker Ty)o = Cy(kerTj,,)

if and only if fa(0zf) = azf = f_ € H?. So, if f € Cy(kerTy,), then f = azf_
with Zf_ € H2 and fa(zf-) = Oa(af) = 0f € H?. Therefore zf_ € ker Ty, and f €
aker Ty, . Conversely, if f € (ker Tj)a, then f € Ky and af € H2, so azf € ZHif_ =H?
which is equivalent to f € Cy(kerTj,). O

Proposition 2.3. Let o, 0 be inner functions. Then
K@ @akerTéa = PgKa.

Proof. 1t is clear that PyK, = Ky and PyK, < (aker Ty, )t because, for any f, € K,
g€ kerTy,,

(Pyfo,ag) ={fo,agy =0.

Conversely, suppose that f € Ky and f € (PpK,)'. Then, for all k, € K,,
0 = {f, Pokay = {f ko), so f € Ky n aH? = akerTj, by Lemma 2.4 below. O

Lemma 2.4. Let a, 0 be inner functions. Then

ker Ty, = aKg n HY = aKp n Ky.
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Proof. Note that f € ker Ty, if and only if f € H2, faf = f— € H?. In other words
af e Ky, f e Hi which is equivalent to f € aKy n H_Q,_ = aKyn Ky. O

We can now state the following generalization of (1.3).
Theorem 2.5. Let «, 0 be inner functions. Then
K@ = PgKa(—BakerTga, K9 = PgC@Ka@keI'Téa.

Proof. The first equality is an immediate consequence of Proposition 2.3, while the
second equality follows from Proposition 2.1 and 2.2 and the properties of conjugations.

O
Remark 2.6. The equalities in Theorem 2.5 can also be expressed in the form
Ko =PyKo® (Ko)a, Ko=PyCoKo® (Kp)as (255)
with
(PO} — TAH2,  (PCoKa)\{0} — H\Ky. (2.6)

Thus Theorem 2.5 generalizes (1.3) in the sense that it reduces to (1.3) when o < 0,
but also in the sense that it describes analogously certain invariance properties under
multiplication by a or a.

It may happen, in Theorem 2.5, that ker Tj,, = {0}, which means that no non-zero
element of Ky is mapped by M, or Mg into Kg. The relations between ker T, and
ker T4, where g € L* and « is an inner function, were studied in [4] where the
following was proved.

Theorem 2.7 ([4, Theorem 6.2]). If g € L* and « is a finite Blaschke product
(denoted o € FBP), then

dimkerT, < oo if and only if dimkerTy, < o0 (2.7)
and, if dimker T, < o0, then for any inner a,
dim ker T,,;, = max{0, dimker T, — dim K, }. (2.8)
In particular, if 6 € FBP, then
ker Ty, = {0} if and only if dim Ky < dim K. (2.9)

However, if neither # nor a belong to F'BP, it may be difficult to see whether
or not we have ker Tj;, = {0}. From Theorem 2.5 we now obtain the following necessary
and sufficient condition.

Proposition 2.8. Let «, 0 be inner functions. Then

ker Tz, = {0} if and only if Ky = PyK,. (2.10)
As an example of application of Proposition 2.8, take § = exp(4}), a = exp(&).
We have that ker T, = {0} ([4, Example 6.3]) so we conclude that
Poxp(is2) Kexp(itl) = Kexp(iz2)-
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3. NEAR INVARIANCE PROPERTIES OF A SHIFTED MODEL SPACE

It is clear from Theorem 2.5 that multiplication by an inner function « and by its
conjugate &, which we will call right and left generalized shift (or simply right and
left shift), respectively, act differently on the subspaces of M which are not mapped
into M by M, or Mg.

In the case of the first equality in Theorem 2.5, from the first relation in (2.6)
we see that Ky is nearly a-invariant ([2]) for any inner function a, i.e.,

for all f e Ky if af € H2, then af € Ko, (3.1)

so that no element of Ky is mapped by a left generalized shift into H?r\Kg. On the
other hand, regarding multiplication by «, we have that Ky is H?-stable ([5]) for right
shifts, i.e., «Ky < H?, and from the second relation in (2.6) we see that, if PyCyK,
is finite dimensional (which happens in particular if & € FBP), then

for all f € Ky, af € Ko ® F, (3.2)

where F < H? is a finite dimensional space of dimension m. If (3.2) holds, then Kj is
almost-invariant for To = P*aP* |y with defect m ([1]), i.e., ToKo © Ko @ F.
More generally, we have the following definition.

Definition 3.1 ([5]). Let M and H be closed subspaces of a Hilbert space H, with
M c HcH, and let X € B(H). We say that M is nearly X -invariant with respect
to (w.r.t.) H if and only if

feM, XfeH= XfeM; (3.3)
M is nearly X -invariant w.r.t. H with defect m if and only if
feM, XfeH—= XfeMaF (3.4)

where F < H is finite dimensional with dim F = m, and we assume that m is the
smallest possible dimension of such a space F. We say that M is H-stable for X if
X (M) < H and, in that case, M is almost-invariant for Py X |y with defect m, if and
only if XM < M @ F where F is finite dimensional with dim F = m. If m = 0, then
M is an invariant subspace for Py X |y and for X.

Remark 3.2. Note that if X f € H, then X f = PgX f. Thus, if (3.3) holds, we can
also say that M is nearly PyX|g—invariant. For instance, if X = z (identifying z
with M3) then, since Zf € H? is equivalent to having f(0) = 0, (3.3) is equivalent to

feM, f0)=0= S*feM (3.5)

which is the usual definition for a nearly S*-invariant subspace of H2 ([10,13]) (also
called nearly z-invariant subspace [2]).
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Remark 3.3. Clearly, if M is invariant for Py X|g, then it is nearly X-invariant
(w.r.t. H). Indeed, if f € M and Xf € H, then Xf = Py Xf € M. One may ask
when is the converse true, i.e., when is a nearly X-invariant (w.r.t. H) space M
invariant for Py X |g. If M is nearly X-invariant (w.r.t. H) or, equivalently, nearly
Py X|g-invariant, then

M=Mx®(M Mx) (3.6)
where M O Mx -~ H\H. Thus M is invariant for Py X |y if and only if

For example, if we take M = Ky, which is nearly S*-invariant, as all Toeplitz
kernels, and also S*-invariant (S* = PTzP™| "2 ), we have

Ko = (Kg): ® [k (3.7)

and we see that L L
S*kS = —0(0)S*0 = —0(0)kS € Ky,

where k§ = 1 —6(0)8 and k§ = z(8 — 6(0)).

Model spaces are a very important type of Toeplitz kernels insofar as they are
the only ones to be S*-invariant; furthermore, all Toeplitz kernels take the form gKy
for same inner function 6 and some outer function g satisfying certain additional
conditions ([9]). However, model spaces can also be seen as particular cases of kernels
of truncated Toeplitz operators (TTO), namely

A = PGPk, (3.8)

with G € H® ([3,11]). Unlike Toeplitz kernels, however, one can also have kernels of
TTO which take the more general form

ker A%, = aKg (3.9)

where «,  are inner functions dividing 6 (o5 = 6). We call aKg a shifted model space.
This is the case, in particular, when G € H®.
Let us consider an example (which we will take as a starting point for the results
that follow):
ker A% = 2K,. (3.10)

Using the first decomposition for Ky in Theorem 2.5 for a = z, we have
2Ky = 2% ker T, @ [2k{)] (3.11)

where we use the notation [f] = span{f}. It is not difficult to see from here that 2Ky
is nearly S*-invariant with defect 1, the defect space ([1]) being [k§] := span{k§}, and
almost-invariant with defect 1 for S*.
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More generally, for a shifted model space a K3 we may ask how multiplication by
a acts on it. Using the first decomposition in Theorem 2.5 or, equivalently, in (2.5),
we have that

aKg = Oé(Kg)* ® aPgK, (3.12)

where a(K3)a - aKg and aPs K, - L*\aH?.

But, since the space aKpg is deﬁned by two inner functions « and 3, we might
also ask what are its invariance properties with respect to multiplication by B. In this
section we study the nearly S-invariance of a shifted model space oK.

We start by showing that no non-zero element of a Kz is mapped into the same
space by multiplication by 8 (in contrast with what happens when multiplying by &).

Proposition 3.4. Let «, 8 be inner functions. Then
(O‘KB)B = {0} (3.13)

Proof. We have that ¢ € aKjp if and only if ap € Kg. In other words, oy € H?r,
Baw = p_ € H2, which implies that B¢ € aH2. Thus, if Sy € aKz < aHZ2, then we
must have S = 0, i.e., ¢ = 0. O

Now we obtain an orthogonal sum decomposition of Kz describing two parts of
that space on which multiplication by 3 acts differently. Note that a Kz < K,z.

Theorem 3.5. Let «, B be inner functions. Then:

(1) aKg = (aKpn Ka) ® Par; K = (aKg n BKy) @ QuKp where Pk, = aPgal
is the orthogonal projection from L* onto aKp and Q, =1 — Py = P~ + aPtal,

(2) (aKp N BKa)\{0} consists of the elements of aKp which are mapped by Mz into
Kap\(aKp),

(3) QuKp\{0} is mapped by My into L*\H? .

Proof. (1) Suppose that ¢ € oKz and ¢ L P,k Kpg. Then, for all f5 € Kg,

sop L Kg,ie, pe BH_%. So there exist hg € Kg such that ¢ = ahg and f; € Hf_
with
ahg = Bfy which is equivalent to Bhg =afy,

and, since Bhg € H?, we see that f, € K,. Therefore ¢ € aKp n 8K, and it follows
that the first equality in Theorem 3.5 holds. The second equality is a consequence of
Lemma 3.6 below, which may have an independent interest.

(2) If f e aKgn K, then Bf € B_aKB N Ky, c Ky < Kap, s0 Bf e Kqop. On the
other hand, it is clear that 3f € K, implies that 5f € K ap\eK 3. Conversely, consider

the subspace K’ of a K3 consisting of all the elements in Kz which are mapped by
Mpz into Ko5. We have

K' ={peaKp:ppe Kup} = aKgn (Kap)s = aKp 0 K, (3.14)

by Proposition 2.1.
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(3) If BQafs € H? for any fs € Kg, then fQqf5 € Kap because Qo f5 € K,p and
K,p is nearly [-invariant. So, Qafs e K' = aKgn K, by (3.14). On the other hand,
QaKp L (aKp n BK,) so the only element of Qo K which is mapped by Mj into
Kop is zero. It follows that 8Qa(K5\{0}) = LA\H2. O

Lemma 3.6. Let o, 8 be inner functions. Then, with the same notation as in
Theorem 3.5,
Pur; Kpg = QuKp. (3.15)
Proof. Let hg be any element of K. Then
P,k hg = aPgahg = afP~BP ahg = afP~B(I — P )ahg
=hg —aP~ ahg = aP+07h5 = Qahgs. O
The decompositions in Theorem 3.5 allow us to establish necessary and sufficient
conditions for a K to be nearly S-invariant (w.r.t. H?, w.r.t. K,z) or nearly S-invariant
with defect. Note that, since model spaces are nearly S-invariant (in H? ) for any inner
function 8 and aKg < K,g, saying that f € aKg, ff € H_Q,_ is equivalent to saying
that f € aKg, Bf € Kap. Thus aKjp is nearly S-invariant w.r.t. H2 if and only if it is
B-invariant w.r.t. Kqg.

Firstly, however, we prove some results that will be used later but are of independent
interest.

Lemma 3.7. Let o, 8 be inner functions. Then QoKg = {0} if and only if 8 < «.
Proof. Indeed, QoK = {0} if and only if K3 < K, which is equivalent to § < a. O
Lemma 3.8. Let 6 and S be inner functions. Then
BKs < 0K if and only if 0 < f3. (3.16)
Proof. Let § < 3 and f € 8Kj, ie., f = Bhs with hs € Ks. Then §f = 6Bhs € H?
because §5 € H*. On the other hand,
B(8f) = B(85hs) = dhs € HZ,

sodf € K3 and we have 08Ks < K. Conversely, suppose that K5 < K. Then
BKs n 0Kz = BKs which, by Theorem 3.5(1), means that Qg Ks = {0}. This is
equivalent to K5 < Kg so d < §. O

Corollary 3.9. Let «, 8 be inner functions and let § = g.c.d.(«, 3). Then

%K(; c aKgn pK,.
Proof. We have that SK; < 0Kz by (3.16), so a§K5 c aKg. Analogously, since
aKj < 6K, then 22 K5 < BK,. O
Lemma 3.10. Let o, B8 be inner functions and let 6 = g.c.d.(c, 8). We have

aKgn K, = {0} if and only if € C.
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Proof. From Corollary 3.9 it follows that
it aKg n K, = {0}, then § € C.

Conversely, suppose that « and § are relatively prime. Then for any f € aKg n SK,
there exist fg € Kg, fo € K, such that

afﬁ = Bfov
Since a and 3 are relatively prime we must have f, € aH?, fz € H?, which implies
that fg = fo = 0. O
Now recall that aKjp is nearly S-invariant (w.r.t. H2, w.r.t. Kup) if and only if
feaKs, Bf e Ko = Bf € aKg, (3.17)
which is equivalent to ~
fe K' = [f € aKjg, (3.18)

where K’ is given by (3.14). If K’ = {0} the implication is trivially true and we say
that aKpg is trivially nearly S-invariant.

Proposition 3.11. Let «, 8 be inner functions. Then the following are equivalent:

(i) aKg is nearly B-invariant (w.r.t. H2, w.r.t. Kug),

(ii) OzK/g N ﬁKa = {0}, B
(iii) aKg is trivially nearly B-invariant (w.r.t. H3, w.r.t. Kag),
(iv) « and B are relatively prime, i.e., g.c.d.(a, 8) € C.

Proof. Conditions (i), (ii), (iii) are equivalent because, by Theorem 3.5(2), B(K"\{0}) <
Kups\aKp so, if §f € aKp holds for all f € K’, as in (3.18), then we must have
K' = aKg n BK, = {0}.

(iii)«(iv) by Lemma 3.10.

O
Corollary 3.12. We have that, on the one hand,
aKp = Pouk, Kg = QuKp if and only if g.c.d.(a,$) e C (3.19)
and, in this case,
(KO} 372 L\H%; (3.20)
on the other hand,
aKg =aKgn K, if and only if B<a (3.21)
and, in this case,
(@K N0} 17 Kas\(@Kp). (3.22)
B

Corollary 3.13. Let a, 5 € H® be inner functions. Then:

(1) aKp is Kag-stable for Mg if and only if 8 < a,
(2) aKp is nearly B-invariant with defect (w.r.t. H2, w.r.t. K.g) if and only if
aKg n BK, is finite dimensional.
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4. THE CASE o = 2

If @ = z, we can obtain several interesting properties by using the decompositions in
Theorem 2.5. In that case we have:

K.=C, PK.=[k)], PCoK.=[kl] (4.1)

where
kS =1-0(0)0, kS =2z(0—06(0)). (4.2)

Thus, from Theorem 2.5

Ko=[k)]®zkerT;,, Kg=[kj]®kerTy,. (4.3)
We start by showing that, just as the decompositions (1.3) are expressed in terms of
model spaces, (4.3) can also be expressed in terms of Toeplitz kernels.

Lemma 4.1. Let 0 be an inner function. Then

Proof. We have that, for p1 € H?,

W0
5%390+ =¢_ ifand only if (k) lo, = 2(k§) o

and, since kS, (k§)~! € H®, the left hand side of the last identity is in H2, while the

right hand side represents a function in Hi_%, so both sides must be equal to a constant.
Therefore o, = M\k§, A e C. O

From (4.3) and Lemma 4.1 we get the following.

Proposition 4.2. Let 0 be an inner function. Then

Ky = ker T = ker T,Q @ zkerT,; (4.4)
kG
and o
Ko =kerTy = S ker T — @ker T;. (4.5)
0 =0
K

Note that, if 8(0) = 0, these equalities become Ky = K,®zK s and Ky = Ko @gKZ,
respectively. ’ )

We can also use (4.3) to get a better understanding of the relations between Ky
and SKy = 2Ky, on the one hand, and between Ky and S* Ky, on the other.

We have, using the second equality in (4.3),

SKy = 2Ky = [2k$] ® zker T, (4.6)

where zker T,  Kg, but zk§ = 0 — 0(0) € H2\ K.
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So we never have SKy < Ky. However, it follows that
SKy < Ko @ CH (4.7)
because
2k =0 —0(0) = 0 — 0(0)k§ — 0(0)0(0)0 = —0(0)k§ + (1 — 6(0)8(0))0

where the first term on the right hand side belongs to Ky and the second term belongs
to CO (see also [1] where (4.7) was proved differently).
On the other hand, using the first equality in (4.3), we have

S*Kp = [S*K)] @ ker T, = [0(0) k] @ ker Tj, . (4.8)

Since Ky is invariant for S*, it is natural to ask when is S* Ky exactly equal to Kjy.
This has a simple answer, comparing the right hand side of (4.8) with the second
decomposition in (4.3). We immediately see the following (see also [6]):

Proposition 4.3. Let 0 be an inner function. Then S*(Ky) = Ky if and only if
0(0) # 0. If 6(0) = 0, then S*(Ky) = ker Ty, & Kpy.

Remark 4.4. This result can be generalized to obtain necessary and sufficient
conditions for T Ky = Ky from Theorem 3.5 in a similar way, when « is inner.
Necessary and sufficient conditions for T; Ky = Ky when a € H® is outer, where
obtained in [6, Lemma 4.9].

Yet another interesting result that one can get from (4.3) is the answer to the
following question: how do we decompose a given function in Ky according to (4.3)?
This is equivalent to asking how to define the orthogonal projections associated with
the orthogonal sums in (4.3), in particular P, 7, . Note that the orthogonal projection
from L? onto the kernel of a Toeplitz operator T¢ is not easy to define, unless one
has a representation of the form ker Tz = gKy, where g is an outer function satisfying
certain conditions (g is called the extremal function for ker T¢) and 6 is an inner
function; in that case Pier1y = Pyx, = 9Psgl ([8,9]). However, that representation is
not known in general. Using (4.3) for k € Ky, we have

k= \k§+ (k= MkS) with A\ eC (4.9)
such that
E—MkS LES,  (k—MES)(0) =0. (4.10)
It follows that A\; = k(0)/k§(0), so
_ k() ;.0 k(0) 1.6
k= Ok + (k - kg(o)k()) (4.11)

with k — kkg((oo)) k§ € zker Tj,. This is equivalent to
0

_ kKeKS 1
k= kog(O)O k+ o) Dkgk:7 (4.12)
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where 0
kE k(O
and we see that k%(O)DkS Py is the orthogonal projection from L? onto z ker T, .
0

Analogously, from the second decomposition in (4.3), for any k € Ky we have
k= Mokl + (k — \ok§). (4.14)

Since o
_ _ R .
Cok = Mokl + (Cok — Agk§) with Ay = % (4.15)

we have, taking into account that k§(0) € R,

_ (Cok)(0) 7.0 (Cok)(0) 7.0\ _ kS®KS 1 B
k= CpO0 (k— P ko) — KBk + A Dk (4.16)

(the first summand belongs to [k§] and the second to ker T, ), where Dj, is defined by
0

ko (Cok)O)| _| k  (Coh)(0)
Dok = |5 = 4.17
Wl RO | looks #0) | 1
and we see that k%(o)DES Py is the orthogonal projection from L? onto ker Ty, .
0

Note that when 6(0) = 0, so that ker T, = Ko, we have k§(0) = 1 and Dy Py,
D,;g Py coincide with PzKQ = 2Pe zI and Ps, respectively.

We have thus proved the following:

Proposition 4.5. If 6 is an inner function, then

1 1
Pkerng = WD]}gPO and szerTgZ = %DkgP%

where Djo and Dye are defined by (4.13) and (4.17), respectively.

5. INVARIANCE PROPERTIES AND COMMUTATION RELATIONS

Model spaces are invariant for S* in H? and, more generally, for any Toeplitz operator
with anti-analytic symbol; Toeplitz kernels are nearly S*-invariant; kernels of truncated
Toeplitz operators are nearly S*-invariant with defect m < 1.

We now study here how those invariance properties and, in general, the invariance
properties of the kernel of an operator T, with respect to another operator, follow
from certain commutation relations between the two operators involved.

Let us start with a general situation. Let H be a closed subspace of H. Our first
result is a very simple one.

Proposition 5.1. Let Xy and Ty be bounded operators on H. If XyTy = Ty Xy,
then ker Ty is invariant for Xy .
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Proof. Let XyTy = Ty Xy and let f be any element of ker Ty. Then
Te(Xuf)=Xa(Tuf) =0,
so Xy fekerTy. O

Now let X € B(#H) and let H be a closed subspace of H. Let Xy = PygX|g.
Consider the operator Ty € B(H). Now recall from Definition 3.1 that ker T is nearly
X-invariant with respect to H if

fekerTy, Xfe H=— Xf=XgfekerTy. (5.1)

Then we will say that ker Ty is nearly Xpg-invariant. Similarly, ker Ty is nearly
X-invariant with respect to H with defect F < H if

fekerTy, XfeH= Xf=XgfekerTg ®F. (5.2)

Then we will say that ker Ty is nearly Xg-invariant with defect m. Recall that F is
finite dimensional with dim F = m, and we assume that m is the smallest possible
dimension of such a space F.

With this definition, for any inner 6, saying for instance that Ky = kerT; < H?
(T; is the Toeplitz operator with symbol ) is nearly S*-invariant is equivalent to
saying that Ky in nearly z-invariant w.r.t. H2 ([2]).

Proposition 5.2. Let X € B(H) and let Xy = PyX|y. Let Ty be a bounded
operator on H. If Ty Xy = XgTy on Hx = {f € H: Xf € H}, then ker Ty 1is nearly
X g -invariant.

Proof. Let fekerTy and X f € H. Then

Ty(Xuf)=XuTuf=0,
so XgfekerTy. O

As an illustration of this result, consider a Toeplitz operator Ty, g € L*, and let
h_ € H®. In general, T, and T},_ do not commute, unless g € H®, so we can apply
Proposition 5.1 only in the latter case. That is the case of a model space Ky = ker Tj.
However, if f € (H3),_ = {fe H? : h_f € H?}, then

T,Ty, f =Tyh_f = Ptgh_f = P*h_gf = P*h_P*gf = Ty _T,f,

so we conclude that ker T}, is nearly T}, -invariant (as it is known). In particular, ker T
is nearly S*-invariant.

Proposition 5.3. Let X € B(H) and let Xy = Py X|pg. Let Ty be a bounded operator
on H. IfTHXH — XHTH,jestm'cted to Hx, is a finite rank operator with rank r, i.e.,
there is F < H with dim F = r, r < oo such that

(Ty Xy — XuTy)f € F, forall feHx.

Then ker Ty is nearly X g-invariant with defect m < r.
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Proof. Let fekerTy, Xfe H. Then
TuXpgf=XgTuf+ f with fE F
if and only if R o
TyXuf=f with feF.

To simplify the proof, we will assume that dim F = 1 (the reasoning is analogous if
dim F is higher). Let fy € F\{0} and define

Hp ={fekerTy n Xy : (TuXuy — XuTu)f = fo}.

Note that Hj may be empty, in which case the assumptions of Proposition 5.2 are
satisfied and ker Ty is nearly X py-invariant. If H is nonempty, then choosing any
element fo € Hj; we have that, for every f € kerTy n Hx, there exists Ay € C such
that Ty (Xuf — A Xufo) =0, 50 Xgf — A (Xu fo) € ker Ty and therefore

Xnuf €kerTy + span{ Xy fo}. O

It was shown in [12] that kernels of truncated Toeplitz operators are either nearly
S*-invariant, or nearly S*-invariant with defect 1. We recover here these results by
a different method, applying Proposition 5.3. We start by an auxiliary result.

Lemma 5.4. Let 6 be an inner function. If hy € HY, then
Pyz0h, = hy (0)kS, kS = 2(0 — 6(0)).
Proof. Calculate

Pyz0h, =8P~ 0zZ(6h, — 0(0)h,(0))
—0P~ zh, — 0(0)h, (0)z
=0zh,(0) — 0(0)h,(0)Z = h (0)K]. O

Remark 5.5. For an inner function # we have that Ky is nearly S*-invariant, i.e.,
feKpzfe HY = zf = PYzf = S*f € Ky, (5.3)
and, on the other hand, for all f € Ky,
Syf=DPyzf =Ptzf =S5*f. (5.4)
Therefore, saying that M < Ky is nearly Sj-invariant, i.e.,
feEM,zfe Ky= Pyzf =S5 feM (5.5)
is equivalent to saying that M < Ky is nearly S*-invariant, i.e.,
feM,zfe Hl = PTzf = S*fe M. (5.6)

The same is true for near Sy -invariance and near S*-invariance with defect.
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Proposition 5.6. Let g€ L. Then for all f € ker AY n (Kp)z we have
(A§SF = SFADf = Askg (5.7)
with \y = (P*(g0f))(0) and k§(z) = 2(0(z) — 6(0)).
Proof. Let us calculate:
ADSyf =ALS*f = PypgPozf
=PygPtzf = Ppgzf = Pyz(Pp + 0P 0)gf
=PyzZPygf + Ppz0(P gf)
=Sy AYf + Apk{ with  Af = (P*(g0f))(0). O
Note that
fe kerAZ if and only if gf = f- +60f, with f_e H?, f, e HY, (5.8)
where -
f+ =P g0f,
SO B
f+(0) = (P™(g0f))(0) =0 if and only if Zzf, € H>. (5.9)
We can now state the following.

Proposition 5.7. Let g € L* and assume that ker Az # {0}. Then ker Az is nearly
S*_invariant with defect 1 if and only if

f(0)=0 forall fe kerAg; (5.10)
otherwise ker Az in nearly S*-invariant.

Proof. From Propositions 5.6 and 5.3 we have that ker Ag is S*-invariant with defect
at most equal to 1; from Proposition 5.2 it follows that ker Ag is nearly S*-invariant
if and only if Ay in (5.7) is equal to O for all f € ker Ag N (Ky)sz, i.e.,

(P*(g0f))(0) =0 forall fe kerAZ N (Kp)z. (5.11)

If f(0) =0 for all f € ker Ag, then ker Ag cannot be a nearly S*-invariant subspace
of H?, and therefore it must have defect 1.
Suppose now that there exists f; € ker Ag with f1(0) # 0. Then we have, for
feker AY n (Kp)s,
ghv=Jfi +0f with f;eH? [ eHY,
gf = f-+0f, with f_eH? fteH?
and, multiplying one equation by f and the other by fi1, we get

fIC 0 = ff-+0ffr

which is equivalent to

ONFOF)f- = fifs = FI
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The left hand side of the last equality belongs to (H2)? and the right hand side to
(H?%)? so both sides must be zero, so fify — ff;" = 0.

Since f(0) = 0 and f;1(0) # 0, we conclude that we must have fi(0) = 0 and
therefore (5.11) holds and ker Az is S*-invariant. O
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