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1. INTRODUCTION

Let θ be an inner function, i.e., θ P H8pDq with |θ| “ 1 a.e. on T, and let H2
` denote

the Hardy space of the unit disk, H2
` :“ H2pDq.

The model space Kθ associated with θ is defined by

Kθ “ H2
` a θH2

`. (1.1)

Model spaces and operators defined on them have attracted enormous attention for
their properties and applications (see for example [7]) and the references therein).
It is well known that the class of model spaces coincides with the class of all proper
invariant subspaces of H2

` for

S˚ “ P `z̄P `|H2
`

, (1.2)

where P ` denotes the orthogonal projection from L2 :“ L2pTq onto H2
`. Another well

known property of model spaces is that if α is an inner function dividing θ, which
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we denote by α ď θ, meaning that θ
α P H8 :“ H8pDq, then Kθ admits two orthogonal

decompositions:
Kθ “ Kα ‘ αK θ

α
, Kθ “ K θ

α
‘ θ

α Kα. (1.3)

One can look at those orthogonal sums as describing the behaviour of different parts
of Kθ, in particular certain invariance properties, with respect to multiplication by ᾱ
and α (Mᾱ and Mα, respectively). Indeed, regarding the first decomposition in (1.3),
and denoting

H2
´ “ z̄H2

` “ L2 a H2
`, (1.4)

we have that

ᾱKα X Kθ “ t0u, with ᾱKα Ă H2
´, and ᾱpαK θ

α
q “ K θ

α
Ă Kθ (1.5)

while, regarding the second decomposition in (1.3),

αK θ
α

Ă Kθ and αp θ
α Kαq “ θKα X Kθ “ t0u with αp θ

α Kαq Ă θH2
`. (1.6)

So we see that one of the terms on the right hand side of each of the decompositions (1.3)
“stays” in Kθ after multiplication by ᾱ or α (depending on the decomposition), while
the other terms are mapped into a space which is disjoint from Kθ, and either “goes”
to H2

´ or to θH2
`.

Taking this perspective enables us to generalize (1.3) and obtain similar decom-
positions when α does not divide θ, by looking at the model space Kθ as a Toeplitz
kernel, Kθ “ ker Tθ̄, where

Tg “ P `gP `|H2 , for g P L8, (1.7)

(the symbol g will be always identified with Mg, the multiplication operator by g) and
asking which elements of this kernel are mapped into the same space by Mᾱ or Mα.

Thus in Section 2 we generalize the decompositions (1.3) to include the case where
α does not divide θ and we study their relation with the usual conjugation on the
model space Kθ. In Section 3 we use some of those results to obtain orthogonal
decompositions for the wider class of shifted model spaces and we establish conditions
for near invariance of the latter with respect to certain operators which include, as
a particular case, the backward shift S˚. In doing so, we illustrate the usefulness of
obtaining appropriate decompositions and, in connection with this, we prove some
results on model spaces which are of independent interest. In Section 4 we consider the
particular case of shifted model spaces of the form zKθ and apply the previous results
to study the relations between Kθ and its images by the shift S and the backward
shift S˚, to answer the question when is S˚Kθ exactly equal to Kθ and to describe
the orthogonal projections from L2 onto the kernels of a particular type of Toeplitz
operators. Finally, in Section 5 we study how the invariance properties of the kernel
of an operator T , with respect to another operator, follow from certain commutation
relations between the two operators involved.
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2. MODEL SPACES AND ORTHOGONAL DECOMPOSITIONS

We will use here the following notation. Let H be a Hilbert space, H and M be closed
subspaces of H with M Ă H Ă H, and let X P BpHq. Then we define

MX “ tf P M : Xf P Mu. (2.1)

We use the notation rf s :“ spantfu.

Proposition 2.1. Let θ and α be inner functions. Then

pKθqα “ pker Tθ̄qα “ ker Tθ̄α, pKθqᾱ “ pker Tθ̄qᾱ “ α ker Tθ̄α. (2.2)

Proof. Note that f, αf P ker Tθ̄ if and only if f P H2
`, θ̄f “ f´ P H2

´, θ̄αf “ h´ P H2
´.

This is equivalent to f P H2
`, θ̄αf “ h´ P H2

´, i.e., f P ker Tθ̄α.
Since f P pker Tθ̄qᾱ if and only if ᾱf P pker Tθ̄qα, it follows that pker Tθ̄qᾱ “

α ker Tθ̄α.

There is a relation between the spaces in the first and the second sets of equalities
in (2.2), given by the usual conjugation Cθ on Kθ, defined by

Cθf “ θz̄f̄ . (2.3)

Proposition 2.2. Let θ and α be inner functions. Then

CθpKθqα “ pKθqᾱ (2.4)

Proof. For f P Kθ, we have that

f P Cθpker Tθ̄qα “ Cθpker Tθ̄αq

if and only if θ̄αpθz̄f̄q “ αz̄f̄ “ f´ P H2
´. So, if f P Cθpker Tθ̄αq, then f “ αz̄f̄´

with z̄f̄´ P H2
` and θ̄αpz̄f̄´q “ θ̄αpᾱfq “ θ̄f P H2

´. Therefore z̄f̄´ P ker Tθ̄α and f P

α ker Tθ̄α. Conversely, if f P pker Tθ̄qᾱ, then f P Kθ and ᾱf P H2
`, so αz̄f̄ P z̄H2

` “ H2
´

which is equivalent to f P Cθpker Tθ̄αq.

Proposition 2.3. Let α, θ be inner functions. Then

Kθ a α ker Tθ̄α “ PθKα.

Proof. It is clear that PθKα Ă Kθ and PθKα Ă pα ker Tθ̄αqK because, for any fα P Kα,
g P ker Tθ̄α,

xPθfα, αgy “ xfα, αgy “ 0.

Conversely, suppose that f P Kθ and f P pPθKαqK. Then, for all kα P Kα,
0 “ xf, Pθkαy “ xf, kαy, so f P Kθ X αH2

` “ α ker Tθ̄α by Lemma 2.4 below.

Lemma 2.4. Let α, θ be inner functions. Then

ker Tθ̄α “ ᾱKθ X H2
` “ ᾱKθ X Kθ.



344 M. Cristina Câmara, Kamila Kliś-Garlicka, and Marek Ptak

Proof. Note that f P ker Tθ̄α if and only if f P H2
`, θ̄αf “ f´ P H2

´. In other words
αf P Kθ, f P H2

` which is equivalent to f P ᾱKθ X H2
` “ ᾱKθ X Kθ.

We can now state the following generalization of (1.3).
Theorem 2.5. Let α, θ be inner functions. Then

Kθ “ PθKα ‘ α ker Tθ̄α, Kθ “ PθCθKα ‘ ker Tθ̄α.

Proof. The first equality is an immediate consequence of Proposition 2.3, while the
second equality follows from Proposition 2.1 and 2.2 and the properties of conjugations.

Remark 2.6. The equalities in Theorem 2.5 can also be expressed in the form

Kθ “ PθKα ‘ pKθqᾱ, Kθ “ PθCθKα ‘ pKθqα, (2.5)

with
pPθKαqzt0u ÝÝÑ

Mᾱ

L2zH2
`, pPθCθKαqzt0u ÝÝÑ

Mα

H2
`zKθ. (2.6)

Thus Theorem 2.5 generalizes (1.3) in the sense that it reduces to (1.3) when α ď θ,
but also in the sense that it describes analogously certain invariance properties under
multiplication by α or ᾱ.

It may happen, in Theorem 2.5, that ker Tθ̄α “ t0u, which means that no non-zero
element of Kθ is mapped by Mα or Mᾱ into Kθ. The relations between ker Tg and
ker Tαg, where g P L8 and α is an inner function, were studied in [4] where the
following was proved.
Theorem 2.7 ([4, Theorem 6.2]). If g P L8 and α is a finite Blaschke product
(denoted α P FBP ), then

dim ker Tg ă 8 if and only if dim ker Tαg ă 8 (2.7)

and, if dim ker Tg ă 8, then for any inner α,

dim ker Tαg “ maxt0, dim ker Tg ´ dim Kαu. (2.8)

In particular, if θ P FBP , then

ker Tθ̄α “ t0u if and only if dim Kθ ď dim Kα. (2.9)

However, if neither θ nor α belong to FBP , it may be difficult to see whether
or not we have ker Tθ̄α “ t0u. From Theorem 2.5 we now obtain the following necessary
and sufficient condition.
Proposition 2.8. Let α, θ be inner functions. Then

ker Tθ̄α “ t0u if and only if Kθ “ PθKα. (2.10)

As an example of application of Proposition 2.8, take θ “ expp t´1
t`1 q, α “ expp t`1

t´1 q.
We have that ker Tθ̄α “ t0u ([4, Example 6.3]) so we conclude that

Pexpp
t´1
t`1 q

Kexpp
t`1
t´1 q

“ Kexpp
t´1
t`1 q

.
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3. NEAR INVARIANCE PROPERTIES OF A SHIFTED MODEL SPACE

It is clear from Theorem 2.5 that multiplication by an inner function α and by its
conjugate ᾱ, which we will call right and left generalized shift (or simply right and
left shift), respectively, act differently on the subspaces of M which are not mapped
into M by Mα or Mᾱ.

In the case of the first equality in Theorem 2.5, from the first relation in (2.6)
we see that Kθ is nearly ᾱ-invariant ([2]) for any inner function α, i.e.,

for all f P Kθ if ᾱf P H2
`, then ᾱf P Kθ, (3.1)

so that no element of Kθ is mapped by a left generalized shift into H2
`zKθ. On the

other hand, regarding multiplication by α, we have that Kθ is H2
`-stable ([5]) for right

shifts, i.e., αKθ Ă H2
`, and from the second relation in (2.6) we see that, if PθCθKα

is finite dimensional (which happens in particular if α P FBP ), then

for all f P Kθ, αf P Kθ ‘ F , (3.2)

where F Ă H2
` is a finite dimensional space of dimension m. If (3.2) holds, then Kθ is

almost-invariant for Tα “ P `αP `|H2
`

with defect m ([1]), i.e., TαKθ Ă Kθ ‘ F .
More generally, we have the following definition.

Definition 3.1 ([5]). Let M and H be closed subspaces of a Hilbert space H, with
M Ă H Ă H, and let X P BpHq. We say that M is nearly X-invariant with respect
to (w.r.t.) H if and only if

f P M, Xf P H ùñ Xf P M; (3.3)

M is nearly X-invariant w.r.t. H with defect m if and only if

f P M, Xf P H ùñ Xf P M ‘ F (3.4)

where F Ă H is finite dimensional with dim F “ m, and we assume that m is the
smallest possible dimension of such a space F . We say that M is H-stable for X if
XpMq Ă H and, in that case, M is almost-invariant for PHX|H with defect m, if and
only if XM Ă M ‘ F where F is finite dimensional with dim F “ m. If m “ 0, then
M is an invariant subspace for PHX|H and for X.

Remark 3.2. Note that if Xf P H, then Xf “ PHXf . Thus, if (3.3) holds, we can
also say that M is nearly PHX|H–invariant. For instance, if X “ z̄ (identifying z̄
with Mz̄) then, since z̄f P H2

` is equivalent to having fp0q “ 0, (3.3) is equivalent to

f P M, fp0q “ 0 ùñ S˚f P M (3.5)

which is the usual definition for a nearly S˚-invariant subspace of H2
` ([10,13]) (also

called nearly z̄-invariant subspace [2]).
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Remark 3.3. Clearly, if M is invariant for PHX|H , then it is nearly X-invariant
(w.r.t. H). Indeed, if f P M and Xf P H, then Xf “ PHXf P M. One may ask
when is the converse true, i.e., when is a nearly X-invariant (w.r.t. H) space M
invariant for PHX|H . If M is nearly X-invariant (w.r.t. H) or, equivalently, nearly
PHX|H -invariant, then

M “ MX ‘ pM a MXq (3.6)

where M a MX ÝÑ
X

HzH. Thus M is invariant for PHX|H if and only if

PHXpM a MXq Ă M.

For example, if we take M “ Kθ, which is nearly S˚-invariant, as all Toeplitz
kernels, and also S˚-invariant (S˚ “ P `z̄P `|H2

`
), we have

Kθ “ pKθqz̄ ‘ rkθ
0s (3.7)

and we see that
S˚kθ

0 “ ´θp0qS˚θ “ ´θp0qk̃θ
0 P Kθ,

where kθ
0 “ 1 ´ θp0qθ and k̃θ

0 “ z̄pθ ´ θp0qq.

Model spaces are a very important type of Toeplitz kernels insofar as they are
the only ones to be S˚-invariant; furthermore, all Toeplitz kernels take the form gKθ

for same inner function θ and some outer function g satisfying certain additional
conditions ([9]). However, model spaces can also be seen as particular cases of kernels
of truncated Toeplitz operators (TTO), namely

Aθ
G “ PθGPθ|Kθ

(3.8)

with G P H8 ([3, 11]). Unlike Toeplitz kernels, however, one can also have kernels of
TTO which take the more general form

ker Aθ
G “ αKβ (3.9)

where α, β are inner functions dividing θ (αβ “ θ). We call αKβ a shifted model space.
This is the case, in particular, when G P H8.

Let us consider an example (which we will take as a starting point for the results
that follow):

ker Aθz
θ “ zKθ. (3.10)

Using the first decomposition for Kθ in Theorem 2.5 for α “ z, we have

zKθ “ z2 ker Tθ̄z ‘ rzkθ
0s (3.11)

where we use the notation rf s “ spantfu. It is not difficult to see from here that zKθ

is nearly S˚-invariant with defect 1, the defect space ([1]) being rkθ
0s :“ spantkθ

0u, and
almost-invariant with defect 1 for S˚.
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More generally, for a shifted model space αKβ we may ask how multiplication by
ᾱ acts on it. Using the first decomposition in Theorem 2.5 or, equivalently, in (2.5),
we have that

αKβ “ αpKβqᾱ ‘ αPβKα (3.12)
where αpKβqᾱ ÝÝÑ

Mᾱ

αKβ and αPβKα ÝÝÑ
Mᾱ

L2zαH2
`.

But, since the space αKβ is defined by two inner functions α and β, we might
also ask what are its invariance properties with respect to multiplication by β̄. In this
section we study the nearly β̄-invariance of a shifted model space αKβ .

We start by showing that no non-zero element of αKβ is mapped into the same
space by multiplication by β̄ (in contrast with what happens when multiplying by ᾱ).
Proposition 3.4. Let α, β be inner functions. Then

pαKβqβ̄ “ t0u. (3.13)

Proof. We have that φ P αKβ if and only if ᾱφ P Kβ . In other words, ᾱφ P H2
`,

β̄ᾱφ “ φ´ P H2
´, which implies that β̄φ P αH2

´. Thus, if β̄φ P αKβ Ă αH2
`, then we

must have β̄φ “ 0, i.e., φ “ 0.

Now we obtain an orthogonal sum decomposition of αKβ describing two parts of
that space on which multiplication by β̄ acts differently. Note that αKβ Ă Kαβ .
Theorem 3.5. Let α, β be inner functions. Then:
(1) αKβ “ pαKβ X βKαq ‘ PαKβ

Kβ “ pαKβ X βKαq ‘ QαKβ where PαKβ
“ αPβᾱI

is the orthogonal projection from L2 onto αKβ and Qα “ I ´ Pα “ P ´ ` αP `ᾱI,
(2) pαKβ X βKαqzt0u consists of the elements of αKβ which are mapped by Mβ̄ into

KαβzpαKβq,
(3) QαKβzt0u is mapped by Mβ̄ into L2zH2

`.
Proof. (1) Suppose that φ P αKβ and φ K PαKβ

Kβ . Then, for all fβ P Kβ ,

0 “ xφ, PαKβ
fβy “ xφ, fβy

so φ K Kβ , i.e., φ P βH2
`. So there exist hβ P Kβ such that φ “ αhβ and f` P H2

`

with
αhβ “ βf` which is equivalent to β̄hβ “ ᾱf`,

and, since β̄hβ P H2
´, we see that f` P Kα. Therefore φ P αKβ X βKα and it follows

that the first equality in Theorem 3.5 holds. The second equality is a consequence of
Lemma 3.6 below, which may have an independent interest.

(2) If f P αKβ X βKα, then β̄f P β̄αKβ X Kα Ă Kα Ă Kαβ , so β̄f P Kαβ . On the
other hand, it is clear that β̄f P Kα implies that β̄f P KαβzαKβ . Conversely, consider
the subspace K 1 of αKβ consisting of all the elements in αKβ which are mapped by
Mβ̄ into Kαβ . We have

K 1 “ tφ P αKβ : β̄φ P Kαβu “ αKβ X pKαβqβ̄ “ αKβ X βKα (3.14)

by Proposition 2.1.
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(3) If β̄Qαfβ P H2
` for any fβ P Kβ , then β̄Qαfβ P Kαβ because Qαfβ P Kαβ and

Kαβ is nearly β̄-invariant. So, Qαfβ P K 1 “ αKβ X βKα by (3.14). On the other hand,
QαKβ K pαKβ X βKαq so the only element of QαKβ which is mapped by Mβ̄ into
Kαβ is zero. It follows that β̄QαpKβzt0uq Ă L2zH2

`.

Lemma 3.6. Let α, β be inner functions. Then, with the same notation as in
Theorem 3.5,

PαKβ
Kβ “ QαKβ . (3.15)

Proof. Let hβ be any element of Kβ . Then

PαKβ
hβ “ αPβᾱhβ “ αβP ´β̄P `ᾱhβ “ αβP ´β̄pI ´ P ´qᾱhβ

“ hβ ´ αP ´ᾱhβ “ αP `ᾱhβ “ Qαhβ .

The decompositions in Theorem 3.5 allow us to establish necessary and sufficient
conditions for αKβ to be nearly β̄-invariant (w.r.t. H2

`, w.r.t. Kαβ) or nearly β̄-invariant
with defect. Note that, since model spaces are nearly β̄-invariant (in H2

`) for any inner
function β and αKβ Ă Kαβ , saying that f P αKβ , β̄f P H2

` is equivalent to saying
that f P αKβ , β̄f P Kαβ . Thus αKβ is nearly β̄-invariant w.r.t. H2

` if and only if it is
β̄-invariant w.r.t. Kαβ .

Firstly, however, we prove some results that will be used later but are of independent
interest.
Lemma 3.7. Let α, β be inner functions. Then QαKβ “ t0u if and only if β ď α.
Proof. Indeed, QαKβ “ t0u if and only if Kβ Ă Kα which is equivalent to β ď α.

Lemma 3.8. Let δ and β be inner functions. Then

βKδ Ă δKβ if and only if δ ď β. (3.16)

Proof. Let δ ď β and f P βKδ, i.e., f “ βhδ with hδ P Kδ. Then δ̄f “ δ̄βhδ P H2
`

because δ̄β P H8. On the other hand,

β̄pδ̄fq “ β̄pδ̄βhδq “ δ̄hδ P H2
´,

so δ̄f P Kβ and we have δ̄βKδ Ă Kβ . Conversely, suppose that βKδ Ă δKβ . Then
βKδ X δKβ “ βKδ which, by Theorem 3.5(1), means that Qβ Kδ “ t0u. This is
equivalent to Kδ Ă Kβ so δ ď β.

Corollary 3.9. Let α, β be inner functions and let δ “ g.c.d.pα, βq. Then
αβ
δ Kδ Ă αKβ X βKα.

Proof. We have that βKδ Ă δKβ by (3.16), so α β
δ Kδ Ă αKβ . Analogously, since

αKδ Ă δKα, then βα
δ Kδ Ă βKα.

Lemma 3.10. Let α, β be inner functions and let δ “ g.c.d.pα, βq. We have

αKβ X βKα “ t0u if and only if δ P C.
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Proof. From Corollary 3.9 it follows that

if αKβ X βKα “ t0u, then δ P C.

Conversely, suppose that α and β are relatively prime. Then for any f P αKβ X βKα

there exist fβ P Kβ , fα P Kα such that

αfβ “ βfα.

Since α and β are relatively prime we must have fα P αH2
`, fβ P βH2

`, which implies
that fβ “ fα “ 0.

Now recall that αKβ is nearly β̄-invariant (w.r.t. H2
`, w.r.t. Kαβ) if and only if

f P αKβ , β̄f P Kαβ ùñ β̄f P αKβ , (3.17)

which is equivalent to
f P K 1 ùñ β̄f P αKβ , (3.18)

where K 1 is given by (3.14). If K 1 “ t0u the implication is trivially true and we say
that αKβ is trivially nearly β̄-invariant.
Proposition 3.11. Let α, β be inner functions. Then the following are equivalent:
(i) αKβ is nearly β̄-invariant (w.r.t. H2

`, w.r.t. Kαβ),
(ii) αKβ X βKα “ t0u,
(iii) αKβ is trivially nearly β̄-invariant (w.r.t. H2

`, w.r.t. Kαβ),
(iv) α and β are relatively prime, i.e., g.c.d.pα, βq P C.
Proof. Conditions (i), (ii), (iii) are equivalent because, by Theorem 3.5p2q, β̄pK 1zt0uq Ă

KαβzαKβ so, if β̄f P αKβ holds for all f P K 1, as in (3.18), then we must have
K 1 “ αKβ X βKα “ t0u.

(iii)ô(iv) by Lemma 3.10.

Corollary 3.12. We have that, on the one hand,

αKβ “ PαKβ
Kβ “ QαKβ if and only if g.c.d.pα, βq P C (3.19)

and, in this case,
pαKβqzt0u ÝÑ

Mβ̄
L2zH2

`; (3.20)

on the other hand,

αKβ “ αKβ X βKα if and only if β ď α (3.21)

and, in this case,
pαKβqzt0u ÝÑ

Mβ̄
KαβzpαKβq. (3.22)

Corollary 3.13. Let α, β P H8 be inner functions. Then:
(1) αKβ is Kαβ-stable for Mβ̄ if and only if β ď α,
(2) αKβ is nearly β̄-invariant with defect (w.r.t. H2

`, w.r.t. Kαβ) if and only if
αKβ X βKα is finite dimensional.
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4. THE CASE α “ z

If α “ z, we can obtain several interesting properties by using the decompositions in
Theorem 2.5. In that case we have:

Kz “ C, PθKz “ rkθ
0s, PθCθKz “ rk̃θ

0s (4.1)

where
kθ

0 “ 1 ´ θp0qθ, k̃θ
0 “ z̄pθ ´ θp0qq. (4.2)

Thus, from Theorem 2.5

Kθ “ rkθ
0s ‘ z ker Tθ̄z, Kθ “ rk̃θ

0s ‘ ker Tθ̄z. (4.3)

We start by showing that, just as the decompositions (1.3) are expressed in terms of
model spaces, (4.3) can also be expressed in terms of Toeplitz kernels.
Lemma 4.1. Let θ be an inner function. Then

rkθ
0s “ ker T

z̄
kθ

0
kθ

0

.

Proof. We have that, for φ˘ P H2
˘,

z̄
kθ

0
kθ

0
φ` “ φ´ if and only if pkθ

0q´1φ` “ zpkθ
0q´1φ´

and, since kθ
0 , pkθ

0q´1 P H8, the left hand side of the last identity is in H2
`, while the

right hand side represents a function in H2
`, so both sides must be equal to a constant.

Therefore φ` “ λkθ
0 , λ P C.

From (4.3) and Lemma 4.1 we get the following.
Proposition 4.2. Let θ be an inner function. Then

Kθ “ ker Tθ̄ “ ker T
z̄

kθ
0

kθ
0

‘ z ker Tzθ̄ (4.4)

and
Kθ “ ker Tθ̄ “

k̃θ
0

kθ
0

ker T
z̄

kθ
0

kθ
0

‘ ker Tzθ̄. (4.5)

Note that, if θp0q “ 0, these equalities become Kθ “ Kz‘zK θ
z

and Kθ “ K θ
z

‘ θ
z Kz,

respectively.
We can also use (4.3) to get a better understanding of the relations between Kθ

and SKθ “ zKθ, on the one hand, and between Kθ and S˚Kθ, on the other.
We have, using the second equality in (4.3),

SKθ “ zKθ “ rzk̃θ
0s ‘ z ker Tθ̄z, (4.6)

where z ker Tθ̄z Ă Kθ, but zk̃θ
0 “ θ ´ θp0q P H2

`zKθ.
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So we never have SKθ Ă Kθ. However, it follows that

SKθ Ă Kθ ‘ Cθ (4.7)

because

zk̃θ
0 “ θ ´ θp0q “ θ ´ θp0qkθ

0 ´ θp0qθp0qθ “ ´θp0qkθ
0 ` p1 ´ θp0qθp0qqθ

where the first term on the right hand side belongs to Kθ and the second term belongs
to Cθ (see also [1] where (4.7) was proved differently).

On the other hand, using the first equality in (4.3), we have

S˚Kθ “ rS˚kθ
0s ‘ ker Tθ̄z “ rθp0q k̃θ

0s ‘ ker Tθ̄z. (4.8)

Since Kθ is invariant for S˚, it is natural to ask when is S˚Kθ exactly equal to Kθ.
This has a simple answer, comparing the right hand side of (4.8) with the second
decomposition in (4.3). We immediately see the following (see also [6]):

Proposition 4.3. Let θ be an inner function. Then S˚pKθq “ Kθ if and only if
θp0q ‰ 0. If θp0q “ 0, then S˚pKθq “ ker Tθ̄z Ř Kθ.

Remark 4.4. This result can be generalized to obtain necessary and sufficient
conditions for TᾱKθ “ Kθ from Theorem 3.5 in a similar way, when α is inner.
Necessary and sufficient conditions for TāKθ “ Kθ when a P H8 is outer, where
obtained in [6, Lemma 4.9].

Yet another interesting result that one can get from (4.3) is the answer to the
following question: how do we decompose a given function in Kθ according to (4.3)?
This is equivalent to asking how to define the orthogonal projections associated with
the orthogonal sums in (4.3), in particular Pker Tθ̄z

. Note that the orthogonal projection
from L2 onto the kernel of a Toeplitz operator TG is not easy to define, unless one
has a representation of the form ker TG “ gKθ, where g is an outer function satisfying
certain conditions (g is called the extremal function for ker TG) and θ is an inner
function; in that case Pker TG

“ PgKθ
“ gPθḡI ([8, 9]). However, that representation is

not known in general. Using (4.3) for k P Kθ, we have

k “ λ1kθ
0 ` pk ´ λ1kθ

0q with λ1 P C (4.9)

such that
k ´ λ1kθ

0 K kθ
0 , pk ´ λ1kθ

0qp0q “ 0. (4.10)

It follows that λ1 “ kp0q{kθ
0p0q, so

k “
kp0q

kθ
0 p0q

kθ
0 `

´

k ´
kp0q

kθ
0 p0q

kθ
0

¯

(4.11)

with k ´
kp0q

kθ
0 p0q

kθ
0 P z ker Tθ̄z. This is equivalent to

k “
kθ

0 bkθ
0

kθ
0 p0q

k ` 1
kθ

0 p0q
Dkθ

0
k, (4.12)
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where
Dkθ

0
k “

ˇ

ˇ

ˇ

ˇ

k kp0q

kθ
0 kθ

0p0q

ˇ

ˇ

ˇ

ˇ

, k P Kθ, (4.13)

and we see that 1
kθ

0 p0q
Dkθ

0
Pθ is the orthogonal projection from L2 onto z ker Tθ̄z.

Analogously, from the second decomposition in (4.3), for any k P Kθ we have

k “ λ2k̃θ
0 ` pk ´ λ2k̃θ

0q. (4.14)

Since
Cθk “ λ̄2kθ

0 ` pCθk ´ λ̄2kθ
0q with λ̄2 “

pCθkqp0q

kθ
0 p0q

, (4.15)

we have, taking into account that kθ
0p0q P R,

k “
pCθkqp0q

kθ
0 p0q

k̃θ
0 `

´

k ´
pCθkqp0q

kθ
0 p0q

k̃θ
0

¯

“
k̃θ

0 bk̃θ
0

kθ
0 p0q

k ` 1
kθ

0 p0q
Dk̃θ

0
k (4.16)

(the first summand belongs to rk̃θ
0s and the second to ker Tθ̄z), where Dk̃θ

0
is defined by

Dk̃θ
0
k “

ˇ

ˇ

ˇ

ˇ

k pCθkqp0q

k̃θ
0 kθ

0p0q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

k pCθkqp0q

Cθkθ
0 kθ

0p0q

ˇ

ˇ

ˇ

ˇ

, (4.17)

and we see that 1
kθ

0 p0q
Dk̃θ

0
Pθ is the orthogonal projection from L2 onto ker Tθ̄z.

Note that when θp0q “ 0, so that ker Tθ̄z “ K θ
z
, we have kθ

0p0q “ 1 and Dkθ
0
Pθ,

Dk̃θ
0
Pθ coincide with PzK θ

z

“ zP θ
z
z̄I and P θ

z
, respectively.

We have thus proved the following:

Proposition 4.5. If θ is an inner function, then

Pker Tθ̄z
“ 1

kθ
0 p0q

Dk̃θ
0
Pθ and Pz ker Tθ̄z

“ 1
kθ

0 p0q
Dkθ

0
Pθ,

where Dk̃θ
0

and Dkθ
0

are defined by (4.13) and (4.17), respectively.

5. INVARIANCE PROPERTIES AND COMMUTATION RELATIONS

Model spaces are invariant for S˚ in H2
` and, more generally, for any Toeplitz operator

with anti-analytic symbol; Toeplitz kernels are nearly S˚-invariant; kernels of truncated
Toeplitz operators are nearly S˚-invariant with defect m ď 1.

We now study here how those invariance properties and, in general, the invariance
properties of the kernel of an operator T , with respect to another operator, follow
from certain commutation relations between the two operators involved.

Let us start with a general situation. Let H be a closed subspace of H. Our first
result is a very simple one.

Proposition 5.1. Let XH and TH be bounded operators on H. If XHTH “ THXH ,
then ker TH is invariant for XH .



Shifted model spaces and their orthogonal decompositions 353

Proof. Let XHTH “ THXH and let f be any element of ker TH . Then

THpXHfq “ XHpTHfq “ 0,

so XHf P ker TH .

Now let X P BpHq and let H be a closed subspace of H. Let XH “ PHX|H .
Consider the operator TH P BpHq. Now recall from Definition 3.1 that ker TH is nearly
X-invariant with respect to H if

f P ker TH , Xf P H ùñ Xf “ XHf P ker TH . (5.1)

Then we will say that ker TH is nearly XH-invariant. Similarly, ker TH is nearly
X-invariant with respect to H with defect F Ă H if

f P ker TH , Xf P H ùñ Xf “ XHf P ker TH ‘ F . (5.2)

Then we will say that ker TH is nearly XH-invariant with defect m. Recall that F is
finite dimensional with dim F “ m, and we assume that m is the smallest possible
dimension of such a space F .

With this definition, for any inner θ, saying for instance that Kθ “ ker Tθ̄ Ă H2

(Tθ̄ is the Toeplitz operator with symbol θ̄) is nearly S˚-invariant is equivalent to
saying that Kθ in nearly z̄-invariant w.r.t. H2 ([2]).
Proposition 5.2. Let X P BpHq and let XH “ PHX|H . Let TH be a bounded
operator on H. If THXH “ XHTH on HX “ tf P H : Xf P Hu, then ker TH is nearly
XH-invariant.
Proof. Let f P ker TH and Xf P H. Then

THpXHfq “ XHTHf “ 0,

so XHf P ker TH .

As an illustration of this result, consider a Toeplitz operator Tg, g P L8, and let
h´ P H8. In general, Tg and Th´

do not commute, unless g P H8, so we can apply
Proposition 5.1 only in the latter case. That is the case of a model space Kθ “ ker Tθ̄.
However, if f P pH2

`qh´
“ tf P H2

` : h´f P H2
`u, then

TgTh´
f “ Tgh´f “ P `gh´f “ P `h´gf “ P `h´P `gf “ Th´

Tgf,

so we conclude that ker Tg is nearly Th´
-invariant (as it is known). In particular, ker Tg

is nearly S˚-invariant.
Proposition 5.3. Let X P BpHq and let XH “ PHX|H . Let TH be a bounded operator
on H. If THXH ´ XHTH , restricted to HX , is a finite rank operator with rank r, i.e.,
there is F̃ Ă H with dim F̃ “ r, r ă 8 such that

pTHXH ´ XHTHqf P F̃ , for all f P HX .

Then ker TH is nearly XH-invariant with defect m ď r.



354 M. Cristina Câmara, Kamila Kliś-Garlicka, and Marek Ptak

Proof. Let f P ker TH , Xf P H. Then

THXHf “ XHTHf ` f̃ with f̃ P F̃

if and only if
THXHf “ f̃ with f̃ P F̃ .

To simplify the proof, we will assume that dim F̃ “ 1 (the reasoning is analogous if
dim F̃ is higher). Let f̃0 P F̃zt0u and define

Hf̃0
“ tf P ker TH X XH : pTHXH ´ XHTHqf “ f̃0u.

Note that Hf̃0
may be empty, in which case the assumptions of Proposition 5.2 are

satisfied and ker TH is nearly XH -invariant. If Hf̃0
is nonempty, then choosing any

element f0 P Hf̃0
we have that, for every f P ker TH X HX , there exists λf P C such

that THpXHf ´ λf XHf0q “ 0, so XHf ´ λf pXHf0q P ker TH and therefore

XHf P ker TH ` spantXHf0u.

It was shown in [12] that kernels of truncated Toeplitz operators are either nearly
S˚-invariant, or nearly S˚-invariant with defect 1. We recover here these results by
a different method, applying Proposition 5.3. We start by an auxiliary result.
Lemma 5.4. Let θ be an inner function. If h` P H2

`, then

Pθ z̄θh` “ h`p0qk̃θ
0 , k̃θ

0 “ z̄pθ ´ θp0qq.

Proof. Calculate

Pθ z̄θh` “θP ´θ̄z̄pθh` ´ θp0qh`p0qq

“θP ´z̄h` ´ θp0qh`p0qz̄

“θz̄h`p0q ´ θp0qh`p0qz̄ “ h`p0qk̃θ
0 .

Remark 5.5. For an inner function θ we have that Kθ is nearly S˚-invariant, i.e.,

f P Kθ, z̄f P H2
` ùñ z̄f “ P `z̄f “ S˚f P Kθ, (5.3)

and, on the other hand, for all f P Kθ,

S˚
θ f “ Pθ z̄f “ P `z̄f “ S˚f. (5.4)

Therefore, saying that M Ă Kθ is nearly S˚
θ -invariant, i.e.,

f P M , z̄f P Kθ ùñ Pθ z̄f “ S˚
θ f P M (5.5)

is equivalent to saying that M Ă Kθ is nearly S˚-invariant, i.e.,

f P M , z̄f P H2
` ùñ P `z̄f “ S˚f P M. (5.6)

The same is true for near S˚
θ -invariance and near S˚-invariance with defect.



Shifted model spaces and their orthogonal decompositions 355

Proposition 5.6. Let g P L8. Then for all f P ker Aθ
g X pKθqz̄ we have

pAθ
gS˚

θ ´ S˚
θ Aθ

gqf “ λf k̃θ
0 (5.7)

with λf “ pP `pgθ̄fqqp0q and k̃θ
0pzq “ z̄pθpzq ´ θp0qq.

Proof. Let us calculate:

Aθ
gS˚

θ f “Aθ
gS˚f “ PθgPθ z̄f

“PθgP `z̄f “ Pθgz̄f “ Pθ z̄pPθ ` θP `θ̄qgf

“Pθ z̄Pθgf ` Pθ z̄θpP `θ̄gfq

“S˚
θ Aθ

gf ` λf k̃θ
0 with λf “ pP `pgθ̄fqqp0q.

Note that

f P ker Aθ
g if and only if gf “ f´ ` θf` with f´ P H2

´, f` P H2
`, (5.8)

where
f` “ P `gθ̄f,

so
f`p0q “ pP `pgθ̄fqqp0q “ 0 if and only if z̄f` P H2. (5.9)

We can now state the following.
Proposition 5.7. Let g P L8 and assume that ker Aθ

g ‰ t0u. Then ker Aθ
g is nearly

S˚-invariant with defect 1 if and only if

fp0q “ 0 for all f P ker Aθ
g; (5.10)

otherwise ker Aθ
g in nearly S˚-invariant.

Proof. From Propositions 5.6 and 5.3 we have that ker Aθ
g is S˚-invariant with defect

at most equal to 1; from Proposition 5.2 it follows that ker Aθ
g is nearly S˚-invariant

if and only if λf in (5.7) is equal to 0 for all f P ker Aθ
g X pKθqz̄, i.e.,

pP `pgθ̄fqqp0q “ 0 for all f P ker Aθ
g X pKθqz̄. (5.11)

If fp0q “ 0 for all f P ker Aθ
g, then ker Aθ

g cannot be a nearly S˚-invariant subspace
of H2

`, and therefore it must have defect 1.
Suppose now that there exists f1 P ker Aθ

g with f1p0q ‰ 0. Then we have, for
f P ker Aθ

g X pKθqz̄,

gf1 “ f´
1 ` θf`

1 with f´
1 P H2

´, f`
1 P H2

`,

gf “ f´ ` θf` with f´ P H2
´, f` P H2

`

and, multiplying one equation by f and the other by f1, we get

ff´
1 ` θff`

1 “ f1f´ ` θf1f`

which is equivalent to
pθ̄fqf´

1 pθ̄f1qf´ “ f1f` ´ ff`
1 .
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The left hand side of the last equality belongs to pH2
´q2 and the right hand side to

pH2
`q2 so both sides must be zero, so f1f` ´ ff`

1 “ 0.
Since fp0q “ 0 and f1p0q ‰ 0, we conclude that we must have f`p0q “ 0 and

therefore (5.11) holds and ker Aθ
g is S˚-invariant.
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