Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a numerical model of the novel design of the axial magnetic bearing with six cylindrical poles. The motivation behind this idea was to eliminate vibra- tions in rotating machinery due to the axial load. Common conception of such a bearing provides a single component of the electromagnetic force, which is not enough to reduce transverse and lateral vibrations of the armature. The proposed design allows for avoiding wobbling of the disc with the use of a few axial force components that are able to actively compensate the axial load and stabilise the disc in a balanced position. Before a real device is manufactured, a virtual prototype should be prepared. The accurate numerical model will provide essential knowledge about the performance of the axial magnetic bearing.
Czasopismo
Rocznik
Tom
Strony
195--208
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wz.
Twórcy
autor
- AGH University of Science and Technology, Poland
autor
- AGH University of Science and Technology, Poland
Bibliografia
- [1] Bachovchin D.K., Hoburg J.F., Post R.F., Stable Levitation of a Passive Magnetic Bearing, IEEE Transactions on Magnetics, vol. 49, no. 1, pp. 609–617 (2013).
- [2] Barbaraci G., Axial active magnetic bearing design, Journal of Vibration and Control, vol. 22, iss. 5, pp. 1190–1197 (2014), DOI: 10.1177/1077546314534720.
- [3] Burcan J., Slawinska A., Self-controllable passive axial magnetic bearing, Tribologia, no. 4, pp. 81–98 (2003).
- [4] Han B., Liu X., Zheng S., A Novel Integral 5-DOFs Hybrid Magnetic Bearing with One Permanent Magnet Ring Used for Turboexpander, Mathematical Problems in Engineering, vol. 2014, no. 162561, pp. 1–18 (2014), DOI: 10.1155/2014/162561.
- [5] Hijikata K. et al., Basic Characteristics of an Active Thrust Magnetic BearingWith a Cylindrical Rotor Core, IEEE Transactions on Magnetics (2008).
- [6] Horikawa O., da Silva I., Single axis controlled attraction type magnetic bearing, Journal of the Brazilian Society of Mechanical Sciences, ISSN 0100-7386, vol. 24, no. 4 (2002), DOI: 10.1590/S010073862002000400012.
- [7] Imoberdorf P., Nussbaumer T., Kolar J.W., Analysis of a combined radial-axial magnetic bearing for a high-speed drive system, 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010), Brighton, UK, pp. 1–6 (2010), DOI: 10.1049/cp.2010.0091.
- [8] Ishino Y., Mizuno T., Takasaki M., Hara M., Yamaguchi D., Development of a Compact Axial Active Magnetic Bearing with a Function of Two-Tilt-Motion Control, Actuators, vol. 6, no. 2, p. 14 (2017), DOI: 10.3390/act6020014.
- [9] Jinji S., Yuan R., Jiancheng F., Passive axial magnetic bearing with Halbach magnetized array in magnetically suspended control moment gyro application, Journal of Magnetism and Magnetic Materials, ISSN 0304-8853, vol. 323, iss. 15 (2011), pp. 2103–2107, DOI: 10.1016/j.jmmm.2011.02.020.
- [10] Lv H. et al., Structure design and optimization of thrust magnetic bearing for the high-speed motor, IEEE International Conference on Mechatronics and Automation (ICMA) (2017).
- [11] Maslen E. et al., Magnetic Bearing Design for a High Speed Rotor, Springer Berlin Heidelberg, Berlin (1989).
- [12] McMullen P.T., Huynh C.S., Hayes R.J., Combination Radial-Axial Magnetic Bearing, Seventh International Symposium on Magnetic Bearings, ETH Zurich (2000).
- [13] Pilat A., A synergistic dynamic 2D FEM model of an active magnetic bearing with three electromagnets, Diffusion and Defect Data – Solid State Data. Part B, Solid State Phenomena, SELM’2013: International Symposium on Electrodynamic and Mechatronic Systems, ISSN 1012-0394, vol. 214, pp. 106–112 (2014).
- [14] Piłat A., Analytical modeling of active magnetic bearing geometry, Applied Mathematical Modelling, ISSN 0307-904X, vol. 34, no. 12, pp. 3805–3816 (2010).
- [15] Pilat A., Sikora B., Design and initial study of porous core electromagnet for levitation applications, MSM 2018, 14th international conference Mechatronic Systems and Materials, AIP Conference Proceedings, ISSN 0094-243X, vol. 2029, iss. 1, Zakopane, Poland (2018).
- [16] Pilat A., Sikora B., Klocek J., Cieślik J., Set-up of active magnetic bearings for control of flexible shaft, MSM 2018, 14th international conference Mechatronic Systems and Materials, AIP Conference Proceedings, ISSN 0094-243X, vol. 2029, iss. 1, Zakopane, Poland (2018).
- [17] Ravaud R., Lemarquand G., Halbach Structures for Permanent Magnet Bearings, Progress in Electromagnetics Research M, vol. 14, pp. 236–277 (2010).
- [18] Schweitzer G., Magnetic Bearings, Springer-Verlag, Zurich (1988).
- [19] Schweitzer G., Maslen E.H., Magnetic Bearings: Theory, Design and Application to Rotating Machinery, Springer, Zurich (2009).
- [20] Sikora B., Pilat A., Hybrid Axial Active Magnetic Bearing – design, modelling and prototype, International Symposium on Magnetic Bearings, Beijing, China (2018).
- [21] Wajenrt D., Tomczuk B., Simulation for the determination of the hybrid magnetic bearing’s electromagnetic parameters, Przeglad Elektrotechniczny, ISSN 0033-2097, R. 93 no. 2, pp. 157–160 (2017).
- [22] Watkins J., Brown G., Blumenstock K., Control of integrated radial and axial magnetic bearings, Proceedings of the 33rd South Eastern Symposium on System Theory, Athens, OH, USA, pp. 1–5 (2001), DOI: 10.1109/SSST.2001.918480.
- [23] Weißbacher C., Stelzer H., Hameyer K., Application of a Tubular Linear Actuator as an Axial Magnetic Bearing, IEEE/ASME Transactions on Mechatronics, vol. 15, no. 4, pp. 615-622 (2010).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4eef6b46-37d8-4e15-89bc-71a367ff3bcd