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1. Introduction

The relations among international stock markets have been investigated in 
many papers, especially in the periods of financial crises. The topic under study is 
important for market participants because due to globalization process the global 
markets are becoming more and more dependent. This observation follows from 
liberalization and deregulation in money and capital markets. In addition, the 
globalization process diminishes opportunities for international diversification.

The financial data show asymmetric dependence. This feature is reflected in 
the observation that in the bear phase stock market data such as returns, trading 
volume and volatility are getting to be more dependent than in the bull stock 
market. This means that investors might lose advantages of international portfolios 
and these portfolios may be more risky than what the investors assume. The occur-
rence of such asymmetric interdependence is also probable between returns and 
trading volume. The goal of this article is to describe co-movements of realized 
volatility and trading volume for selected stocks listed on Vienna Stock Exchange. 

The remainder of the contribution is organized in the following way: in sec-
tion 2 we conduct the literature overview concerning the dependence concepts, 
including regime switching models and copulas and discuss the recent contribu-
tions to the subject; in section 3 we present the data; in the following section the 
dependence measures and copulas are overviewed; in the fifth section copula 
regime switching model is described; in the sixth section the results are reported 
and evaluated; section 7 concludes the paper. 

 * AGH University of Science and Technology in Cracow, Department of Applications of Mathematics 
in Economics, e–mails: henryk.gurgul@gmail.com; artur.machno@gmail.com

  Financial support for this paper from the National Science Centre of Poland (Research Grant DEC-
2012/05/B/HS4/00810) is gratefully acknowledged.

 ** University of Applied Sciences Joanneum in Graz, Department of Banking and Insurance, e-mail: 
roland.mestel@uni-graz.at



46

Henryk Gurgul, Artur Machno, Roland Mestel

2. Literature overview

The dependence between the stock markets can be measured through such 
variables as stock return, trading volume and volatility. The most frequently used 
methodology in the investigations of the interdependencies is based on Granger 
causality and VAR model (see [18]). In one of the earliest contributions on de-
pendency of stock markets Eun and Shim ([15]) checked the relationships among 
nine major stock markets including Australia, Canada, France, Germany, Hong 
Kong, Japan, Switzerland, the UK and the US by means of the Vector Autoregressive 
(VAR) Model. The authors found that news in the US market has a major impact 
on the other markets. Lin et al.([31]) focused on interdependence between the 
returns and volatility of Japan and the US market indices using high frequency 
data of daytime and overnight returns. They established that daytime returns in 
the US or Japan market were linked with the overnight returns in the other. 

Kim and Rogers ([27]) studied the dynamic interdependence between the 
stock markets of Korea, Japan, and the US. They underlined the importance of 
Japanese and the US stock markets for Korean market since the last became more 
open for foreign investors. By mean of EGARCH model Booth et al. ([11]) found 
strong interdependence among the Danish, Finnish, Norwegian and Swedish 
Stock Market. According to the authors the essential dependence started with the 
so-called Thailand currency crisis. However, it was not observed after the Hong 
Kong crisis. Ng ([33]) established significant causality running from the US and 
Japan stock market to six Asian markets: Hong Kong, Korea, Malaysia, Singapore, 
Taiwan and Thailand. Klein et al. ([28]) by means of wavelets technique, applied 
to three developed markets: US, Germany and Japan and two emerging markets 
Egypt and Turkey proved that changes in these developed markets had effects 
on the emerging markets. In the paper [6], using the VAR-EGARCH model, it is 
checked the interdependence among three EU markets namely Germany, France 
and the UK. The results supported the hypothesis of the cointegration among 
the mentioned stock markets. 

Sharkasi et al. ([42]) used wavelet analysis and found the global co-movements 
among seven stock markets, three in Europe (Irish, UK, and Portuguese), two in the 
Americas (namely US, and Brazilian) and two in Asia (Japanese and Hong Kong).

The contributions by Ammermann and Patterson ([2]), Lim et al. (30), Lim 
and Hinich ([29]), Bessler et al. ([7]) or Bonilla et al. ([10]) tried to established 
a different pattern of the stock price development. The authors detected long 
random walk phases. They alternated with short ones and showed significant 
linear and/or nonlinear correlations. The contributors thought that these serial 
dependencies had an episodic character. Due to these contributors the serial de-
pendencies caused the low performance of the forecasting models. Nivet ([34]) 
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checked the random walk hypothesis for the Warsaw Stock Exchange. Worthing-
ton and Higgs ([46]) proved the efficiency on the Hungarian, Polish, Czech and 
Russian stock markets. The Hungarian stock market followed the random walk. 
Gilmore and McManus ([17]) found autocorrelations in some of the Central and 
Eastern European stock markets. Schotman and Zalewska ([43]), claimed that the 
nonsynchronous trading and asymmetric response to good and bad news were 
reason for autocorrelation.

Todea et al. ([45]) applied the Hinich–Patterson windowed-test procedure. By 
means of it, he investigated the temporal persistence of linear and, especially, non-
linear interdependencies among six Central and Eastern European stock markets.

Issues concerning asymmetry of dependence, were analyzed by Longin and 
Solnik ([32]). The contributors found (by means of the constant conditional 
correlation (CCC) model introduced by Bollerslev ([8]) that the correlations be-
tween the stock markets over a period of three decades were not stable over this 
time period. In addition, they increased during more volatile periods. Moreover, 
they depended on some economic variables such as interest rates, buybacks or 
dividend yields. Some results based on extreme value theory were showed in 
Ang and Chen ([5]). The authors derived a test for asymmetric correlation. They 
suggested comparison of empirical and model-based conditional correlations. The 
authors justified that regime switching models were most suitable for modelling 
of asymmetry. Ang and Bekaert in [3] and [4] applied a Gaussian Markov switch-
ing model for international returns. They estimated two regimes: a bull regime 
with positive mean, low volatilities and low correlations; and a bear regime with 
negative returns, high volatilities and correlation.

Regime switching models were introduced in econometrics by Hamilton 
([21]). Currently they found many applications in finance. In the papers [19] and 
[20] is being concerned the interest rate, the methodology of regime switching 
models was used. The contributors used also a regime switching model for inter-
national financial returns. In the paper ([31]) the regime switching modelling was 
applied to the model correlation. The author assumed a normal distribution. The 
marginals were modelled with the GARCH. The model by Pelletier was something 
“intermediate” between the constant conditional correlation (CCC) of Bollerslev 
([8]) and the dynamic conditional correlation (DCC) model of Engle ([14]).

Patton ([36]) indicated a significant asymmetry in the structure of dependence 
of the financial returns what is very important for a certain kind of investors. In 
his further contributions (see [37] and [38]), he introduced conditional copulas 
and time-varying models of bivariate dependence of coefficients in order to model 
foreign exchange rates. Jondeau and Rockinger ([26]) applied the skewed-t GARCH 
models for returns with univariate time-varying skewness. Finally, in order to 
measure the dependence between pairs of countries, they used a time-varying or 
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a switching Gaussian, or Student t copula. Jondeau and Rockinger ([26]) and Hu 
([25]) suggested the so-called copula based multivariate dynamic (CMD) model. 
Klein at al. ([28]) conducted an extensive simulation study, and demonstrated 
that CMD models were proper tools for investigating different time series with 
the GARCH structure for the squared residuals. They showed that the copula 
(mis-) specification should play a key role before the usage of the CMD model.

In recent years the economists combined copulas and regime switching 
models in bivariate financial data. Rodriguez ([41]) and Okimoto ([35]) applied 
regime switching copulas for pairs of international stock indices. While Okimoto 
([35]) dealt with the US-UK pair, Rodriguez ([41]) worked with pairs of Latin 
American and Asian countries. The contributors applied methodology developed 
by Ramchand and Susmel ([40]) with a structure where variances, means and 
correlations switched together in the two-variable system. Garcia and Tsafak 
([16]) estimated a regime switching model in a four-variable system of domestic 
and foreign stocks and bonds. The authors used a mixture of bivariate copulas 
to model the dependence between all possible pairs of variables.

Chollete et al. ([12]) generalized the Pelletier ([39]) model to the non-Gauss-
ian case. The authors excluded the Gaussian assumption, because the returns were 
not Gaussian and suggested a regime switching structure for dependence. They 
used flexible multivariate copulas. They also tried to separate the asymmetry in 
the marginals from the one in the dependence. This could not have been done 
in a Gaussian switching model. Their investigations were based on copulas. The 
authors instead of Gaussian marginal distribution applied the skewed t GARCH 
model of Hansen ([24]).

The authors applied their model in multivariate case and therefore they 
made their approach more appropriate for practical applications. They used the 
canonical vine copula, which allowed very general types of dependence.

The authors found that the VaR and Expected Shortfall of the canonical vine 
models were essentially better than the Student t or Gaussian copula models, 
which implied that the inappropriate usage of the latter models could lead to the 
underestimation of the risk of a portfolio.

In order to model the observed asymmetric dependence in pairs trading 
volume realized volatility, we estimated a bivariate copula based on a regime 
switching model. We applied this model to high frequency data from Vienna 
Stock Exchange. The choice of copula is important for the risk management, be-
cause it modifies the Value at Risk (VaR) and Expected Shortfall of international 
portfolio returns. We will check the dynamics of the interdependence between 
realized volatility and trading volume. The main goal is to document changes in 
the dependency and the asymmetry in both quiet and hectic (bull or bear) phase 
in the stock markets. 
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3. Data

The database consists of tick-by-tick prices of five stocks of Austrian Trade 
index. In particular, the data set consists of stock prices of Andritz, ERSTE, OMV, 
TKA, and Voest from January 2, 2006 through November 9, 2011. Volatility is 
measured by realized variance computed as the sum of the intraday squared log 
returns. Therefore, the following formula presents the realized volatility RV,

 RV r t Tt
i

M

ti
= = …

=
∑

1

2 1, , , ,

where rti
 are intraday log returns and M is the number of intraday observations. It 

has been analyzed and solved that prices sampled at high frequency are affected 
by microstructure noise. This phenomenon has been solved in various ways (see 
[26] and [6]). To avoid this effect, the simplest way is to sample at a lower fre-
quencies (see [9] and [13]). In this paper, we use 5-minutes transaction prices. 
The set of time series analyzed in this paper are created as follows: firstly, returns 
over five minutes intervals were calculated and realized volatility was calculated 
as the sum of squared returns. Daily volume was obtained as the sum of intraday 
volume. Logarithms of realized volatility and trading volume series appeared to 
be modelled better by the method presented in this article. Therefore, a realized 
volatility and a trading volume series is understood as the logarithm of the cor-
responding time series. Volatility and volume series consist of 1454 observations 
for all five stocks. 

The following two tables (Table 1, 2) present summary statistics of examined 
time series. 

Table 1

Realized volatility time series summary statistics

Andritz Erste OMV TKA Voest

Mean 7.7657 7.8810 8.0110 8.1135 7.6640

Median 7.8396 8.0704 8.1167 8.2144 7.7764

Variance 0.8848 1.1065 0.7354 0.8181 0.7760

Q1 8.4043 8.6427 8.5739 8.7440 8.2992

Q3 7.2397 7.2471 7.5862 7.6103 7.0914

Skewness 0.5612 0.5650 0.7386 0.5959 0.5016
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Table 2

Daily volume time series summary statistics

Andritz Erste OMV TKA Voest

Mean 11.9151 14.4443 13.3927 13.8826 13.6980

Median 11.8941 14.4065 13.3850 13.8908 13.5845

Variance 0.3242 0.7770 0.2392 0.2618 0.7029

Q1 11.5349 13.7355 13.0620 13.5338 13.0652

Q3 12.3003 15.1522 13.7069 14.2245 14.3680

Skewness 0.1462 0.0653 0.2342 0.0844 0.2119

4. Copulas and dependence measures

In this article, we deal with a dependence between two variables: a realized 
volatility and a daily trading volume by copulas. Before doing this we report 
briefly some definitions and properties of copulas. Most of definitions and some 
of properties can be extended to the multivariate case, especially the central result 
of copula theory which is Sklar’s theorem, expressed and proved by Sklar ([44]). 
It states that a joint distribution can be decomposed into marginal distributions 
and a copula. It also gives a simple way to create bivariate distribution from 
any given marginal distributions. For bivariate cumulative distribution function 
H(x, y) and its margins F(x) and G(y), according to Sklar’s theorem, there exists 
a function C:[0,1]2  [0,1], called copula, such that H(x, y)  C(F (x), G(y)). In 
the case of continuous variables, the function is unique and is equal to C(u,v)  
H(F 1(u), G 1(v)), for u, v  [0,1]. 

Conversely, every function C:[0,1]2  [0,1] which has the following properties: 

1. For every u, v  [0,1] , C(u,0)  C(0,v)  0, 

 C(u,1)  u and C(1,v)  v. (1)

2. For every u1,u2,v1,v2  [0,1], such that u1  u2 and v1  v2,

 C u v C u v C u v C u v2 2 2 1 1 2 1 1 0, , , , .( ) − ( ) − ( ) + ( ) ≥  (2)

 is called copula.
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Those two concepts of copula function are in fact equivalent. Every copula 
obtained from Sklar’s theorem satisfies (1) and (2). Conversely, if C:[0,1]2  [0,1] 
satisfies (1) and (2), there exists a pair of variables X and Y for which C is the 
copula obtained from Sklar’s theorem. Clearly, a copula can be considered as the 
cumulative distribution function of the bivariate random variable with uniformly 
distributed margins. According to this, for given copula C, we denote its density 
function as c. Therefore, for continuous random variables X and Y:

 h x y f x g y c F x G y, , ,( ) = ( ) ( ) ( ) ( )( )
where h(x, y) is joint density function of random vector (X, Y); f(x) and g(y) are 
density functions and F(x) and F(y) are cumulative distribution functions of X 
and Y, respectively.

The simplest copula is (u, v)  uv. It connects independent margins. Other 
interesting examples are, so called, Fréchet-Hoeffding copula bounds, for u, v in 
[0,1]. They are defined by:

 W u v u v M u v u v, max{ , }, , min{ , }.( ) = + − ( ) =1 0

The generalization of the function W to higher dimensions is not a copula. 
Only in two dimensions it is a copula, in which case it corresponds to counter-
monotonic random variables.

The function W and M are called lower and upper Fréchet-Hoeffding copula 
bounds, because for any copula C and u, v in [0,1], we have:

 W u v C u v M u v, , , .( ) ≤ ( ) ≤ ( )

Copulas used in this article are the Gaussian copula and two-parameter Ar-
chimedean copulas BB1, BB4 and BB7. The Gaussian copula is constructed from 
a bivariate normal distribution. For given correlation , the Gaussian copula with 
parameter  can be written as

 C u vGauss
r = ( ) ( )( )− −F F FS

1 1, ,  (3)

where 1 is the inverse cumulative distribution function of the standard normal 
distribution and  is the joint cumulative distribution function of a bivariate 

normal distribution with mean zero and covariance matrix S =
⎡

⎣
⎢

⎤

⎦
⎥

1

1

r
r

.
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Below BB1, BB4 and BB7 families are defined:

 C u vBB
q d

q d q d d
q

q d, , , ;1

1
1

1 1 1 0 1= + −( ) + −( )⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
≥ ≥− −

−

 (4)

 C u v u vBB
q d

q q q d q d d
,

4

1
1

1 1 1= + − + −( ) + −( )⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
− − − − − − −

−
qq

q d, , ;≥ >0 0  (5)

 C u vBB
q d

q d q d d
q

q d, , ,7

1
1

1 1 1 1 1 0= − − −( ) + −( )⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
≥ ≥

− − −
;;  (6)

where u:  1  u and v:  1  v.

Due to Sklar’s theorem, copula function is a very efficient tool to study the 
structure of dependence of multivariate random variables. In recent years copulas 
are widely used to describe the structure of dependence between financial vari-
ables. The most traditional dependence measure is Pearson correlation. However, 
it measures only linear dependence and works only in the range of the spherical 
and elliptical distributions. The exceedance correlation is generalized Pearson co-
efficient which measures asymmetric dependence. It is defined as the correlation 
between two variables, conditional on both variables being below or above some 
fixed levels. Lower exceedance correlation between variables X and Y is defined as: 

 ecorr X Y corr X Y X YL
q q q q
1 2 1 2, , , ,( ) = ≤ ≤( )|

where 1 and 2 are fixed levels. Analogously, for fixed levels 1 and 2, upper 
exceedance correlation between variables X and Y is defined as:

 ecorr X Y corr X Y X YU
q q q q
1 2 1 2, : , , .( ) = ≥ ≥( )|

Exceedance correlation is used particularly in risk management, where nega-
tive extreme values of an investment return are crucial. The main problem with 
exceedance correlation is that it is dependent on margins. Another weakness is 
that it is computed only from observations which are below (above) the fixed 
limit. Therefore, as the limit is further out into the tail as exceedance correlation 
is computed less precisely.

Another tail dependence measure is quantile dependence. For random vari-
ables X and Y with distribution functions F and G, respectively, the lower tail 
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dependence at threshold  is defined as P Y G X F[ | ]< ( ) < ( )− −1 1a a . Analogously, 
the upper tail dependence at threshold  is defined as [ | ]Y G X F> ( ) > ( )− −1 1a a . 
The dependence measure which is particularly interesting is tail dependence 
obtained as the limit of quantile dependence. We define lower tail dependence 

L of X and Y as: 

 l a a
a

L P Y G X F= < ( ) < ( )⎡⎣ ⎤⎦→
− −

+
lim ,

0

1 1|

and upper tail dependence U of X and Y as: 

 l a a
a

U P Y G X F= > ( ) > ( )⎡⎣ ⎤⎦→
− −

−
lim .

1

1 1|

Variables X and Y are called asymptotically dependent if L  (0,1] and asymp-
totically independent if  L  0. Unlike exceedance correlations, tail dependence 
is independent of margins. Let C be the copula obtained from Sklar’s theorem 
for continuous random variables X and Y. In this case, lower tail dependence L 
and upper tail dependence U can be computed as follows:

 l lL
u

U
u

C u u

u

C u u

u
=

( )
=

( )
→ →+ −
lim

,
, lim

,
.

0 1
 (7)

Another class of dependent measures are measures based on ranks of vari-
ables. The two most popular rank correlations are Kendall’s  and Spearman’s . 
Both rely on the notion of concordance. Let (x1, y1) and (x2, y2) be two obser-
vations of random vector (X, Y). We say that the pair is concordant whenever  
(y1 y2)(x1 x2) 0, and discordant whenever (y1 y2)(x1 x2) 0. Intuitively, a pair 
of random variables are concordant if large values of one variable occur more 
likely with large values of the other variable. For random variables X and Y, Ken-
dall’s  is defined as:

 t = −( ) −( ) >⎡⎣ ⎤⎦ − −( ) −( ) <⎡⎣ ⎤⎦P y y x x P y y x x1 2 1 2 1 2 1 20 0 ,

where (x1, y1) and (x2, y2) are independent observations of (X, Y). In terms of 
copulas, Kendall’s  has concise form. For the pair of random variables X and Y 
and its copula C, we have:

 tC C u v dC u v= ( ) ( ) −∫4 1
0 1 2[ , ]

, , .  (8)

Since copula is invariant with respect to any monotonic transformation, 
Kendall’s  has also this property. From the formula (8) we see that Kendall’s  
does not depend on marginal distributions. 
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We may think of copulas as of the function describing the structure of de-
pendence of two variables. The copula for a pair of random variables may be used 
as an efficient tool for the dependence investigation. It provides us with simple 
formulas of dependency measures such as tail dependence or Kendall’s . The 
Table 3 presents lower and upper tail dependencies, defined by (7), for copulas 
presented before.

Table 3

Tail dependencies for Gaussian, BB1, BB2, BB4 and BB7 copulas

L U

C Gauss 0 0

CBB1
2

1−
dq 2 2

1

− q

CBB4 ( )2 2
1 1

− − −d q 2
1−
d

CBB7
2

1−
d 2 2

1

− q

The Table 4 presents empirical dependence measures for analyzed pairs of 
time series.

Table 4

Realized volatility time series summary statistics

Andritz Erste OMV TKA Voest

0.5621 0.4052 0.4320 0.4260 0.1430

Kendall’s t 0.3794 0.2696 0.2786 0.2961 0.1129

L 0.2945 0.2123 0.3151 0.3219 0.2671

U 0.4452 0.3493 0.3082 0.2260 0.0548

 ecorrL
Q1

1,Q
2
1

0.0193 0.1927 0.1279 0.1776 0.2630

 ecorrU
Q1

3,Q
2
3

0.3941 0.2282 0.1391 0.0398 -0.2493

Here  is Pearson’s correlation, Q1 and Q2 are -quantiles of a realized volatility 
series and a daily volume series, respectively. Tail dependencies L and U  are ap-

proximated by P Y G X F< ( ) < ( )⎡⎣ ⎤⎦
− −1 10 1 0 1. .|  and P Y G X F> ( ) > ( )⎡⎣ ⎤⎦

− −1 10 9 0 9. .| , 
respectively. 
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5. Regime switching copula model

Switching models have recently been broadly explored. These models were 
firstly presented by Hamilton (1989) and widely analyzed by Hamilton (1994). 
In this article, a switching model based on copulas is presented and used to in-
vestigate relation between volatility and trading volume on a stock market. The 
model is based on two-state Markov process. Let yt  (y1t, y2t) be the vector of 
the realized volatility and the daily trading volume, and let Y y y yt t t t= …− −( , , , )1 2  
be a series of observations available at time t. 

We denote the state process by st. Joint density function f for yt is defined as:

 f y Y s j c F y F y f y ft t t
j

t t t| −
( )=( ) = ( ) ⋅ ⋅1 1 1 1 2 2 2 1 1 1 2, ( ; , ( ; )) ( ; ) (d d d yy t2 2; ),d

where Fi and fi , for i  1,2 , are marginal distribution function and density of yi, 
and i is a parameter vector for the marginal distribution. The copula c(1) in the 
first regime is chosen in order to model an asymmetry in tails of the count distribu-
tion. Precisely, c(1) is chosen as a one of three copulas BB1, BB4 and BB7 defined 
by (4), (5) and (6). Conversely, the copula c(2) in the second regime is symmetric 
Gaussian copula defined by (5). The probability that the state i precedes the state 
j is denoted by p P s j s iij t t= = =−[ | ]1 . All four probabilities form transition matrix:

 P =
⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

⎡

⎣
⎢

⎤

⎦
⎥

p p

p p

p p

p p
11 12

21 22

11 11

22 22

1

1
.  (9)

The estimation of regime switching copula model is based on the maximum 
likelihood estimation. Unfortunately, computing power needed to maximize likeli-
hood function is enormous. To simplify calculation decomposition of likelihood 
function to margins likelihood functions and the copula likelihood function is 
made. Formally, for Y  (Y1, Y2, ..., YT) log likelihood function is defined by:

 L f y Y
t

T

t tY ; , ( | ; , ),d q d q( ) =
=

−∑
1

1ln

and it is decomposed to Lm and Lc such that:

 L L Lm cY Y Y; , ; ; , ,d q d d q( ) = ( ) + ( )

where

 L f y Y f y Ym
t

T

t t t tY ; [ ( |( ; ) ; ,d d d( ) = + ( )( ⎤⎦
=

− −∑
1

1 1 1 1 1 2 2 2 1 2ln ln |  (10)
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 L c F y Y F y Yc
t

T

t t t tY ; , [ ( |( ; ), ; ;d q d d q( ) = ( )( ⎤⎦
=

− −∑
1

2 1 1 1 1 2 2 2 1 2ln | ..  (11)

The estimation is conducted in two steps. Firstly, estimations of parameters 1 
and 2 of marginal distribution is performed by the maximization of the likelihood 
function defined by (10). Secondly, we maximize the likelihood function defined 
by (11) to estimate parameters 1 and 2 of copulas c(1) and c(2), and transition 
matrix given by (9). 

A method of estimation of marginal distributions depends on the model 
which we choose to describe volatility and volume series. To do the second part 
of estimation of regime switching copula model we use Hamilton filter defined 
by the following recurrence relations: 

 x
x h

x h

^
^

^|
|

|( )
,t t

t t t

T
t t t

= −

−

1

11

�

�
  (12)

 x x
^ ^

| | ,t t
T

t t+ =1 P  (13)

where x q
^

| [ | ; ]t t t tP s j Y= =  and  x q
^

| ; ,t t t tP s j Y+ += =⎡⎣ ⎤⎦1 1 | the Hadamard’s multipli-
cation denoted by �  means the multiplication coordinate by coordinate. The 
vector of copulas’ density is denoted by t,

 
h

d d q

d dt
t t

t t

c F y F y

c F y F y
=

( ) ( )
( ) (

( )

( )

1
1 1 1 2 2 2 1

2
1 1 1 2 2 2

( ; , ; ; )

( ; , ; ))
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥; )
.

q2

The log likelihood function defined by (10) for the observed data can be 
written as:

 Lc
t

T
T

t t tY ; , ,
^

|d q x h( ) = ⎛
⎝⎜

⎞
⎠⎟

⎛
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In the next section, we present estimation results for the five analyzed stocks.
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6. Estimation results

The marginal distributions can be modelled by various methods. In this article 
a simple ARMA model was used. It may not seem to be the most efficient model. 
However, in respect to the investigating dependence, more advanced models of 
the margins lead to similar results. For all five series of realized volatility and the 
five series of daily trading volume an ARMA(2,1) model seems to be the proper 
one. In every set of estimation results, all parameters are significant. This sug-
gests that the model is not overparametrized. Including more parameters does 
not improve results. The Table 5 and 6 present the estimated parameters for the 
five realized volatility series and the five daily trading volume series:

 

Table 5

Estimated parameters of an ARMA(2,1) model for realized volatility time series

Andritz Erste OMV TKA Voest

ar1 1.1064 1.2801 1.2036 1.1155 1.1012

ar2 0.1235 0.2869 0.2153 0.1254 0.1176

ma1 0.7868 0.8232 0.8300 0.8213 0.7799

const 7.7653 7.8781 8.0073 8.1035 7.6613

Table 6

Estimated parameters of an ARMA(2,1) model for daily volume time series

Andritz Erste OMV TKA Voest

ar1 1.2213 1.2856 1.2802 1.2660 1.2930

ar2 0.2417 0.2932 0.2968 0.2689 0.2965

ma1 0.8644 0.7937 0.8716 0.9505 0.8568

const 11.9068 14.4653 13.3779 13.8284 13.6951

Using the estimation method presented in the previous section, the log likeli-
hood function has been maximized. The Table 7 presents results of the estimation: 
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Table 7

Estimated parameters of switching copula model

Copula(1) p11 p22

Andritz BB7 0.9963 0.8566 1.2007 0.1964 0.4096

Erste BB4 0.9831 0.8206 0.2380 0.4011 0.2799

OMV BB4 0.9705 0.9147 0.0628 0.1617 0.2644

TKA BB7 0.9926 0.7546 1.1398 0.1928 0.2964

Voest BB4 0.9879 0.7628 0.1581 0.4206 0.2457

In table 7 the values p11 and p22 denote suitable transition probabilities,  
and  stand for parameters of an asymmetric copula and  denotes the parameter 
of the Gaussian copula.

Applying formulas for lower and upper tail dependencies contained in table 3, 
it is possible for us to calculate tail dependencies between investigated pairs of 
variables. Clearly, both tail dependencies are equal to zero in the second regime. 
The Table 8 presents lower and upper tail dependencies in the first regime.

Table 8

Tail dependencies between realized volatility and daily volume in the first regime

Andritz Erste OMV TKA Voest

L 0.0293 0.0803 0.0002 0.0274 0.0236

U 0.2188 0.1776 0.0137 0.1630 0.1924

In table 7, we see that a dependence in the upper tail is much stronger than 
in the lower tail for all the five of stocks. Both tail dependencies of OMV highly 
differ from tail dependencies of other stocks, in fact they are smaller. Furthermore, 
the lower tail dependence of realized volatility and daily volume of Erste series is 
noticeably higher than lower tail dependencies of other stocks. 

The backward recursion provides us with the probability of being at the 
particular regime at the time t. It is given by:

 x x x x^ ^ ^ ^

| | | |{ ,[ ]}t T t t
T

t T t t= ÷( )+ +� P 1 1

where  ^t t  and ^t 1 t  are defined by (12) and (13), �  and ( ) denote multiplying 
and dividing coordinate by coordinate, respectively. From the practical point of 
view, the most relevant is vector ^T T . This vector is a probability vector of being 
at the particular regime at the time T. The Figure 1–5 presents smoothed prob-
abilities of being at the first regime for five investigated stocks: 
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Figure 1. Estimated probabilities of being at the first regime for stock Andritz 

Figure 2. Estimated probabilities of being at the first regime for stock Erste 

Figure 3. Estimated probabilities of being at the first regime for stock OMV 
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Figure 4. Estimated probabilities of being at the first regime for stock TKA 

Figure 5. Estimated probabilities of being at the first regime for stock Voest 

7. Concluding remarks

The knowledge of interdependencies between realized volatility and trad-
ing volume and their changes over the time may support investment decisions. 
The copula based regime switching models are flexible tools for modelling of 
the changes over the time period of the structure of interdependencies between 
return volatility and trading volume. The estimation of the model parameters 
allows researchers to compute the mean time of remaining the financial vari-
able (e.g. equity price or trading volume) in a certain state and time of coming 
back to the previous state. The computations by means of copula based regime 
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switching models delivered results concerning the interdependencies between 
realized return volatility and trading volume of selected companies listed in ATX.

A copula in the first regime was chosen as asymmetric copula with positive 
lower and upper tail dependencies. Conversely, Gaussian copula in the second 
regime is symmetric copula and variables linked with such copula are tail indepen-
dent. For all analyzed stocks the probability of being at the first regime appeared 
to be vitally greater than being at the second regime. This result suggests that 
there is considerable dependence between realized volatility and daily volume 
in extreme values.

One can notice that a dependence in the upper tail is much more stronger 
than in the lower tail for all the five stocks in the first regime. Both tail dependen-
cies of OMV were essentially smaller than the tail dependencies of other stocks. 

In addition, the lower tail dependence of realized volatility and daily trading 
volume of Erste is significantly higher than in the case of other stocks under study. 
Since OMV and Erste are of similar capitalization the results suggest that the links 
between realized volatility and trading volume do not probably depend on the 
size of company but on the branch where a company is active. 
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