Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Titania nanotube (TNT) arrays fabricated by anodizing of titanium foil in organic (ethylene glycol) and inorganic (phosphoric acid) electrolytes and thermally modified in argon revealed much improved properties to detect hydrogen peroxide. Horseradish peroxidase and acetate thionine co-absorbed by a dip coating on the TNT electrode were used to detect hydrogen peroxide in phosphate buffered saline. The morphology and electrochemical properties of TNT arrays were studied by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. Well defined oxidation and reduction peaks for potassium ferricyanide have been observed for TNT formed in ethylene glycol and annealed in argon. TNT arrays formed in organic electrolyte and annealed in argon indicated more favorable adsorption and electrochemical properties what was confirmed by detection of hydrogen peroxide towards analyte in phosphorate buffered saline solution.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
765--772
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wzory
Twórcy
autor
- University of Zielona Gora, Department of Mechanical Engineering, Biomedical Engineering Division, 9 Licealna Str., 65-417 Zielona Góra, Poland
autor
- University of Zielona Gora, Department of Mechanical Engineering, Biomedical Engineering Division, 9 Licealna Str., 65-417 Zielona Góra, Poland
Bibliografia
- [1] C. Yua, L. Wanga, W. Li, C. Zhub, N. Baoa, H. Gua, Sens. Actuators B Chem. 211, 17-24 (2015).
- [2] Y. Wang, H. Xu, J. Zhang, G. Li, Sensors 8, 2043-2081 (2008).
- [3] H. Liu, V. Gu, D. Li, M. Zhang, Mater. Res. Bull. 64, 375-379 (2015).
- [4] R. Major, M. Sanak, P. Wilczek, J. M. Lackner, M. Kot, B. Major, Nanostructural materials for implants and cardiovascular biomedical devices, in: Z. Nawrat (Ed.), 2011 ImplantExpert.
- [5] P. Handzlik, K. Fitzner, Arch. Metall. Mater. 55 (2), 521-532 (2010).
- [6] P. Xiao, B. B. Garcia, Q. Guo, D. Liu, G. Cao, Electrochem. Commun. 9, 2441-2447 (2007).
- [7] S. Bauer, S. Kleber, P. Schmuki, Electrochem. Commun. 8, 1321-1325 (2006).
- [8] P. Hoyer, Langmuir 12, 6, 1411-1413 (2006).
- [9] H. Ou, S. L. Lo, Sep. Purif. Technol. 58, 1, 179-191 (2007).
- [10] A. Kaczmarek, T. Klekiel, E. Krasicka-Cydzik, Surf. Interface Anal. 42, 510-514 (2003).
- [11] E. Krasicka-Cydzik, K. Arkusz, A. Kaczmarek, Eng. Biomat. 15, 114, 34-40 (2012).
- [12] E. Krasicka-Cydzik, A. Kaczmarek, K. Arkusz, Mater. Eng. 4, 485-489 (2011).
- [13] Y. Xie, L. Zhoua, H. Huang, Biosens. Bioelectron. 22, 2812-2818 (2007).
- [14] S. Liu, A. Chen, Langmuir 21, 8409-8413 (2005).
- [15] A. K. M. Kafi, G. Wu, A. Chen, Biosens. Bioelectron. 24, 566-571 (2008).
- [16] I. Roman, M. L. Soare, R. D. Trusca, C. Fratila, E. Krasicka-Cydzik, M. S. Stan, A. Dinischiotu, J. Electrochem. Soc. 161 (14) 275-282 (2014).
- [17] C. Gao, F. Hua, C. M. Li, P. K. Shenc, Biosens. Bioelectron. 24, 819-824 (2008).
- [18] A. V. Mokrushina, M. Heim, E. E. Karyakina, A. Kuhn, A. A. Karyakin, Electrochem. Commun. 29, 78-80 (2013).
- [19] A. Cordoba, N. Alasino, M. Asteasuain, I. Magario, M. L. Ferreira, Chem. Eng. Sci. 129, 249-259 (2015).
- [20] X. Yin, M. Guo, Y. Xia, W. Huang, Z. Li, J. Electroanal. Chem. 720, 19-23 (2014).
- [21] B. Lyson-Sypien, K. Zakrzewska, M. Gajewska, Arch. Metall. Mater. 60 (2) 935-940 (2015).
- [22] H. Tavakoli, A. A. Baghbanan, Bioelectrochem. 104, 79-84 (2015).
- [23] S. Li, X. Zhu, W. Zhang, G. Xie, W. Feng, Appl. Surf. Sci. 258, 2802-2807 (2012).
- [24] E. E. Ferapontova, Electroanalysis 16 (13), 1101-1112 (2004).
- [25] P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50, 2904-2939 (2011).
- [26] M. R. Sturgeon, P. Lai, M. Z. Hu, J. Material. Res. 26 (20), 2612-2623 (2011).
- [27] S. Oh, K. S. Brammer, Y. S. J. Li, D. Teng, A. Engler, S. Chien, A. Jin, PNAS, 106 (7), 2130-2135 (2009).
- [28] E. Gongadze, D. Kabaso, S. Bauer, P. Jung, P. Schmuki, A. Iglic, Mini Rev. Med. Chem. 13 (2), 194-200 (2013).
- [29] J. Kapusta-Kołodzieja, O. Tynkevych, A. Pawlika, M. Jarosz, J. Mech, G. D. Sulka, Electrochim. Acta 144, 127-135 (2014).
- [30] B. Yang, C. K. Ng, M. K. Fung, C. C. Ling, A. B. Djurisic, S. Fung, Mat. Chem. Phys. 130, 1227–1231 (2011).
- [31] P. Xiao, D. Liu, B. B. Garcia, S. Sepehri, Y. Zhang, G. Cao, Sens. Actuators B Chem. 134, 367-372 (2008).
- [32] M. Ramalingam, S. Ramakrishna, S. Best, Biomaterials and Stem Cells in Regenerative Medicine, 2012 CRC Press.
- [33] E. Ferapontova, E. Dominguez, Bioelectrochem. 55, 127-130 (2002).
- [34] M. A. Henderson, Surf. Sci. 419, 2 (1999).
- [35] L. Kavan, M. Grätzel, J. Rathouský, A. Zukal, J. Electrochem. Soc. 143, 394 (1996).
- [36] P. G. Simt, E. Whalley, J. Phys. Chem. 91, 1877-1878 (1987).
- [37] T. Ruzgas, E. Csöregi, J. Emnéus, L. Gorton, Anal. Chim. Acta. 330 (2-3), 123-138 (1996).
- [38] F. Wu, J. Xu, Y. Tian, Z. Hu, L. Wang, Y. Xian, L. Jin, Biosens. Bioelectron. 24, 198-203 (2008).
- [39] A. Curulli, A. Cusma, S. Kaciulis, G. Padeletti, L. Pandolfi, F. Valentini, M. Viticoli, Surf. Interface Anal. 38, 478-481 (2006).
Uwagi
EN
1. The authors gratefully thank for the financial support received by the Ministry of Science and Higher Education in the Diamond Grant (no DI2011004941).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ee794f2-0104-4f5c-bc0e-00fd78eb72c2