PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer vision based on Raspberry Pi system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper focused on designing and developing a Raspberry Pi based system employing a camera which is able to detect and count objects within a target area. Python was the programming language of choice for this work. This is because it is a very powerful language, and it is compatible with the Pi. Besides, it lends itself to rapid application development and there are online communities that program Raspberry Pi computer using Python. The results show that the implemented system was able to detect different kinds of objects in a given image. The number of objects were also generated displayed by the system. Also the results show an average efficiency of 90.206 % was determined. The system is therefore seen to be highly reliable.
Rocznik
Strony
85--102
Opis fizyczny
Bibliogr. 6 poz., fig., tab.
Twórcy
  • Al-Hikma University, Karada Kharidge, Baghdad, Iraq
  • University of Nairobi, P.O.Box 30197, GPO, Nairobi, Kenya
  • AL-Mustansiryia University, Baghdad, Iraq
Bibliografia
  • [1] Islam, M. M., Azad, M. S. U., Alam, M. A., & Hassan, A. (2014). Raspberry Pi and image processing based Electronic Voting Machine (EVM). International Journal of Scientific and Engineering Research, 5(1), 1506–1510.
  • [2] Jana, S., & Borkar, S. (2017). Autonomous object detection and tracking using Raspberry Pi. International Journal of Engineering Science and Computing, 7(7), 14151–14155.
  • [3] Nikam, A., Doddamani, A., Deshpande, D., & Manjramkar, S. (2017). Raspberry Pi Based obstacle avoiding robot. International Research Journal of Engineering and Technology, 4(2), 917–919.
  • [4] Odondi, O. (2016). Computer Vision through the Raspberry-PI: Counting Objects (graduation project). University of Nairobi, Kenya.
  • [5] Sandin, V. (2017). Object detection and analysis using computer vision (graduation project). Chalmers University of Technology, Sweden.
  • [6] Senthilkumar, G., Gopalakrishnan, K., & Sathish Kumar, V. (2014). Embedded image capturing system using Raspberry Pi system. International Journal of Emerging Trends and Technology in Computer Science, 3(2), 213–215.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ee74169-d533-4623-9ff3-853fc7ac16ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.