PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

QMAK: Interacting with Machine Learning Models and Visualizing Classification Process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In various classification problems beside high accuracy data analysts expect often understanding and certain insight into the process of classification. To help them understand why a trained model selects a particular decision, how confident it is in the assigned decision, and to enable interactive improvement of trained models we present QMAK. The tool visualizes not only classification models but also the processes classifying individual objects. Five classical machine learning models and their classification process are visualized with QMAK: neural network, decision tree, k nearest neighbors, classifier based on principal component analysis (PCA) and rough set based classifier. QMAK provides also exemplary functions enabling users to modify trained models interactively.
Rocznik
Tom
Strony
315--318
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
autor
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • University of Warsaw Faculty of Mathematics, Informatics and Mechanics Banacha 2, 02-097 Warsaw, Poland
Bibliografia
  • 1. “Neptune: metadata store for machine learning operations,” accessed: 2023-05-15. [Online]. Available: https://neptune.ai
  • 2. “Graphviz: open source graph visualization software,” accessed: 2023-05-15. [Online]. Available: https://graphviz.org
  • 3. “Tensorboard: Tensorflow’s visualization toolkit,” accessed: 2023-05-15. [Online]. Available: https://www.tensorflow.org/tensorboard
  • 4. “dtreeviz: python library for decision tree visualization and model interpretation,” accessed: 2023-05-15. [Online]. Available: https://github.com/parrt/dtreeviz
  • 5. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witen, “The weka data mining software: An update,” SIGKDD Explorations, vol. 11, no. 1, pp. 10–18, 2009. http://dx.doi.org/10.1145/1656274.1656278
  • 6. “Netron: visualizer for neural network, deep learning, and machine learning models,” accessed: 2023-05-15. [Online]. Available: https://github.com/lutzroeder/netron
  • 7. A. LeNail, “Nn-svg: Publication-ready neural network architecture schematics,” Journal of Open Source Software, vol. 4, no. 33, p. 747, 2019. http://dx.doi.org/10.21105/joss.00747
  • 8. A. Wojna and R. Latkowski, “Rseslib 3: Library of rough set and machine learning methods with extensible architecture,” LNCS Transactions on Rough Sets XXI, vol. 10810, pp. 301–323, 2019. http://dx.doi.org/10.1007/978-3-662-58768-3_7
  • 9. A. Wojna, R. Latkowski, and Ł. Kowalski, RSESLIB: User Guide, accessed: 2023-05-15. [Online]. Available: http://rseslib.mimuw.edu.pl/rseslib.pdf
  • 10. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson, 2020.
  • 11. J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann, 1993.
  • 12. A. Wojna, “Analogy-based reasoning in classifier construction (phd thesis),” LNCS Transactions on Rough Sets IV, vol. 3700, pp. 277–374, 2005. http://dx.doi.org/10.1007/11574798_11
  • 13. K. I. Diamantaras and S. Y. Kung, Principal Component Neural Networks: Theory and Applications. New York: John Wiley & Sons, Inc., 1996.
  • 14. Z. Pawlak, Rough Sets - Theoretical Aspects of Reasoning about Data. Dordrecht: Kluwer Academic Publishers, 1991.
  • 15. A. Skowron and C. Rauszer, “The discernibility matrices and functions in information systems,” in Intelligent Decision Support, Handbook of Applications and Advances of the Rough Sets Theory, R. Slowinski, Ed. Dordrecht: Kluwer Academic Publishers, 1992, pp. 331–362.
Uwagi
1. Main Track Short Papers
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ee60c7d-60a0-425f-b112-a5b24c7fa524
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.