PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Oscillatory and asymptotic behavior of a third-order nonlinear neutral differential equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses oscillatory and asymptotic properties of solutions of a class of third-order nonlinear neutral differential equations. Some new sufficient conditions for a solution of the equation to be either oscillatory or to converges to zero are presented. The results obtained can easily be extended to more general neutral differential equations as well as to neutral dynamic equations on time scales. Two examples are provided to illustrate the results.
Rocznik
Strony
839--852
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • University of Tennessee at Chattanooga Department of Mathematics Chattanooga, TN 37403, USA
autor
  • Gaziosmanpasa University Department of Mathematics Faculty of Arts and Sciences 60240, Tokat, Turkey
autor
  • Department of Engineering Mathematics Faculty of Engineering Cairo University Orman, Giza 12221, Egypt
Bibliografia
  • [1] R.P. Agarwal, S.R. Grace, D. O'Regan, The oscillation of certain higher-order functional differential equations, Math. Comput. Modelling 37 (2003), 705-728.
  • [2] B. Baculikova, J. Dzurina, Oscillation of third-order neutral differential equations, Math. Comput. Modelling 52 (2010), 215-226.
  • [3] A. Domoshnitskii, Extension of Sturm's theorem to equations with time-lag, Differ. Uravn. 19 (1983), 1475-1482.
  • [4] J.R. Graef, S.H. Saker, Oscillation theory of third-order nonlinear functional differential equations, Hiroshima Math. J. 43 (2013), 49-72.
  • [5] J.R. Graef, M.K. Grammatikopoulos, P.W. Spikes, Asymptotic behavior of nonoscillatory solutions of neutral delay differential equations of arbitrary order, Nonlinear Anal. 21 (1993), 23-42.
  • [6] J.R. Graef, R. Savithri, E. Thandapani, Oscillatory properties of third order neutral delay differential equations, Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, May 24-27, 2002, Wilmington, NC, USA, pp. 342-350.
  • [7] J.K. Hale, Theory of Functional Differential Equations, Springer, New York, 1977.
  • [8] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Reprint of the 1952 edition, Cambridge University Press, Cambridge, 1988.
  • [9] I.T. Kiguradze, T.A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer, Dordrecht 1993.
  • [10] R. Koplatadze, On oscillatory properties of solutions of functional differential equations, Publishing House, Tbilisi, 1995.
  • [11] T. Li, E. Thandapani, Oscillation of solutions to odd-order nonlinear neutral functional differential equations, Electron. J. Differential Equations 23 (2011), 1-12.
  • [12] T. Li, E. Thandapani, Oscillation theorems for odd-order neutral differential equations, Funct. Differ. Equ. 19 (2012), 147-155.
  • [13] T. Li, C. Zhang, G. Xing, Oscillation of third-order neutral delay differential equations, Abstr. Appl. Anal. 2012 (2012), Article ID 569201.
  • [14] B. Mihalikova, E. Kostikova, Boundedness and oscillation of third order neutral differential equations, Tatra Mt. Math. Publ. 43 (2009), 137-144.
  • [15] H.A. Mohamad, Oscillation of linear neutral differential equation of third order, Iraqi J. Sci. 50 (2009) 4, 543-547.
  • [16] A.A. Soliman, R.A. Sallam, A. Elbitar, A.M. Hassan, Oscillation criteria of third order nonlinear neutral differential equations, Int. J. Appl. Math. Res. 1 (2012), 268-281.
  • [17] E. Thandapani, T. Li, On the oscillation of third-order quasi-linear neutral functional differential equations, Arch. Math. (Brno) 47 (2011), 181-199.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ee17c2c-5d2d-4484-926e-130a411cecb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.