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Abstract. This paper discusses oscillatory and asymptotic properties of solutions of a class
of third-order nonlinear neutral differential equations. Some new sufficient conditions for
a solution of the equation to be either oscillatory or to converges to zero are presented. The
results obtained can easily be extended to more general neutral differential equations as well
as to neutral dynamic equations on time scales. Two examples are provided to illustrate the
results.
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1. INTRODUCTION

In this paper, we consider the third order neutral differential equation
(
(z′′(t))α

)′ + q(t)xα(δ(t)) = 0, t ≥ t0 ≥ 0, (1.1)

where z(t) = x(t) + p(t)x(τ(t)) and α > 0 is the ratio of odd positive integers.
In the remainder of the paper we assume that:

(i) p, q : [t0,∞) → R are real valued continuous functions with q(t) > 0, p(t) ≥ 1,
and p(t) 6≡ 1 for large t;

(ii) τ , δ : [t0,∞) → R are real valued continuous functions such that τ(t) < t, τ is
strictly increasing on [t0,∞), and limt→∞ τ(t) = limt→∞ δ(t) =∞.

The cases
τ(t) ≥ δ(t) (1.2)
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and
τ(t) ≤ δ(t). (1.3)

are both considered here.
By a solution we mean a function x : [tx,∞)→ R such that z(t) ∈ C2 ([tx,∞),R)

and (z′′(t))α ∈ C1 ([tx,∞),R), and which satisfies equation (1.1) on [tx,∞). Without
further mention, we will assume throughout that every solution x(t) of (1.1) under
consideration here is continuable to the right and nontrivial, i.e., x(t) is defined on
some ray [tx,∞), for some tx ≥ t0, and sup {|x(t)| : t ≥ T} > 0 for every T ≥ tx.
Moreover, we tacitly assume that (1.1) possesses such solutions. Such a solution is
said to be oscillatory if it has arbitrarily large zeros on [tx,∞); otherwise it is called
nonoscillatory.

Neutral differential equations have received a lot of attention as has the study of
the oscillatory and asymptotic properties of their solutions. The problem of asymp-
totic and oscillatory behavior of solutions of neutral differential equations is of both
theoretical and practical interest. One reason for this is that they arise, for example,
in applications to electric networks containing lossless transmission lines. Such net-
works appear in high speed computers where lossless transmission lines are used to
interconnect switching circuits. They also occur in problems dealing with vibrating
masses attached to an elastic bar and in the solution of variational problems with
time delays. We refer the reader to the book by Hale [7] for additional applications in
science and technology.

The oscillatory and asymptotic behavior of (1.1) and it’s special and more general
forms such as

z′′′(t) + q(t)x(δ(t)) = 0, (1.4)
(
a(t) (b(t)z′(t))′

)′
+ q(t)x(δ(t)) = 0, (1.5)

(
a(t) (z′′(t))α

)′ + q(t)xα(δ(t)) = 0, (1.6)

(
a(t) (z′′(t))α

)′ +
n∑

j=1
fj(t, x(τj(t))) = 0, (1.7)

and if n ≥ 3 is an odd integer,

z(n)(t) + q(t)xα(δ(t)) = 0 (1.8)

and
z(n)(t) + q1(t)x(δ(t)) + q2(t)x(σ(t)) = 0 (1.9)

have been studied by many authors utilizing different methods; see, for example,
[2, 6, 11–13,15–17] and the references therein.

In reviewing the literature, it becomes apparent that results on the oscillatory
and asymptotic behavior of third order neutral differential equations are relatively
scarce and most such results are concerned with the cases where 0 ≤ p(t) ≤ p0 < 1
and −1 ≤ p(t) < 0. We refer the reader to the papers [2, 6, 13–16] and the references
cited therein as examples of recent results on this topic. For the classification of the
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oscillatory and nonoscillatory behavior of solutions of nonlinear neutral differential
equations based on the values of the function p(t), we refer the reader to the paper of
Graef, Spikes, and Grammatikopoulos [5].

On the other hand, to the best of our knowledge, there are a few results regarding
oscillatory and asymptotic behavior of third order neutral differential equations in
case p(t) > 1; see [11,12, 17]. In [11,17], the authors considered equations (1.8) and
(1.6), respectively, under the assumption that τ ◦ δ = δ ◦ τ . In [12], the authors studied
equation (1.9) with τ ◦ δ = δ ◦ τ and τ ◦ σ = σ ◦ τ . But, these conditions are very
restrictive for applications; for example, letting τ(t) = t/2 and δ(t) = t − 1, we see
that τ ◦ δ 6= δ ◦ τ . Therefore, our results also improve the results in [11,12,17] in the
sense that we do not require that τ ◦ δ = δ ◦ τ .

The purpose of this paper then is to present some new oscillation and asymptotic
results for (1.1) that are new even for the α = 1 and constant delays such as τ(t) = t−a
and δ(t) = t − b with a, b > 0. Furthermore, the results in this paper can easily be
extended to the more general equations (1.5)–(1.9). It is our belief that the present
paper will contribute significantly to the study of oscillatory and asymptotic behavior
of solutions of third order neutral differential equations.

The type of results obtained here, namely that a solution either oscillates or
converges to zero, is related to the Properties A and B introduced by Kiguradze (see,
for example, [9]) for ordinary differential equations and studied by Koplatadze [10] for
delay equations. For the oscillatory behavior of solutions and related properties of n-th
order neutral delay equations, we refer the reader to the paper of Domoshnitskii [3].

2. MAIN RESULTS

We begin with the following lemmas that are essential in the proofs of our theorems.
For simplicity in what follows, it will be convenient to set:

η′+(t) := max {0, η′(t)} ,

p∗(t) := 1
p(τ−1(t))

(
1− 1

p(τ−1(τ−1(t)))

)
,

and
p∗(t) := 1

p(τ−1(t))

(
1− 1

p(τ−1(τ−1(t)))
m(τ−1(τ−1(t)))
m(τ−1(t))

)
,

where τ−1 is the inverse of τ and m is a function to be specified later.
Lemma 2.1 ([8]). If X and Y are nonnegative and λ > 1, then

λXY λ−1 −Xλ ≤ (λ− 1)Y λ,
where equality holds if and only if X = Y .
Lemma 2.2 ([4, 9]). If the function f(t) satisfies f (i)(t) > 0, i = 1, 2, . . . , n, and
f (n+1)(t) < 0, then

f(t)
tn/n! ≥

f ′(t)
tn−1/ (n− 1)! .
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Lemma 2.3. Assume that conditions (i)–(ii) hold and let x(t) be a positive solution
of (1.1). Then for sufficiently large t, either
(I) z(t) > 0, z′(t) > 0, z′′(t) > 0, and z′′′(t) < 0, or
(II) z(t) > 0, z′(t) < 0, z′′(t) > 0, and z′′′(t) < 0.
Proof. The proof is standard and so the details will be omitted.

Remark 2.4. An analogous result holds if x(t) is an eventually negative solution.
Lemma 2.5. Assume that conditions (i)–(ii) hold, p∗(t) > 0, and let x(t) be an even-
tually positive solution of (1.1) with z(t) satisfying Case (II). If

∞∫

t0

∞∫

v



∞∫

u

q(s) (p∗(δ(s)))α ds




1/α

dudv =∞, (2.1)

then limt→∞ x(t) = 0.
Proof. Let x(t) be an eventually positive solution of (1.1). Then, there exists t1 ∈ [t0,∞)
such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0 for t ≥ t1. From the definition of z,
(see also (8.6) in [1]), we have

x(t) = 1
p(τ−1(t))

(
z(τ−1(t))− x(τ−1(t))

)

= z(τ−1(t))
p(τ−1(t)) −

1
p(τ−1(t))p(τ−1(τ−1(t)))

(
z(τ−1(τ−1(t)))− x(τ−1(τ−1(t)))

)

≥ z(τ−1(t))
p(τ−1(t)) −

1
p(τ−1(t))p(τ−1(τ−1(t)))z(τ

−1(τ−1(t))).

(2.2)

Since z(t) is decreasing and τ(t) < t, we have

z
(
τ−1(t)

)
≥ z

(
τ−1(τ−1(t))

)

and so from (2.2) we obtain

x(t) ≥ p∗(t)z
(
τ−1(t)

)
. (2.3)

In view of (2.3), equation (1.1) can be written as
(
(z′′(t))α

)′ + q(t) (p∗(δ(t)))α
(
z
(
τ−1(δ(t))

))α ≤ 0 for t ≥ t1. (2.4)

Since z(t) satisfies Case (II) of Lemma 2.3, there exists a constant κ such that

lim
t→∞

z(t) = κ <∞,

where κ ≥ 0. If κ > 0, then there exists t2 ≥ t1 such that τ−1(δ(t)) > t1 and

z(t) ≥ κ for t ≥ t2. (2.5)
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Integrating (2.4) twice from t to ∞ gives

−z′(t) ≥ κ
∞∫

t



∞∫

u

q(s) (p∗(δ(s)))α ds




1/α

du.

Integrating the last inequality from t2 to t yields

z(t2) ≥ κ
t∫

t2

∞∫

v



∞∫

u

q(s) (p∗(δ(s)))α ds




1/α

dudv,

which contradicts (2.1), and so we have κ = 0. Therefore, limt→∞ z(t) = 0. Since
0 < x(t) < z(t) on [t1,∞), we get limt→∞ x(t) = 0. This completes the proof of
the lemma.

Lemma 2.6. Assume that conditions (i)–(ii) hold, p∗(t) > 0, and x(t) is an eventu-
ally positive solution of (1.1) with z(t) satisfying Case (I). If there exist a function
m ∈ C1 ([t0,∞), (0,∞)) such that

2m(t)− tm′(t) ≤ 0 (2.6)

for large t, then z(t) satisfies the inequality
(
(z′′(t))α

)′ + q(t) (p∗(δ(t)))α
(
z
(
τ−1(δ(t))

))α ≤ 0 (2.7)

for large t.

Proof. Let x(t) be an eventually positive solution of (1.1) such that x(t) > 0,
x(τ(t)) > 0, and x(δ(t)) > 0, z(t) satisfies Case (I), (2.6) holds, and τ−1(δ(t)) > t0 for
t ≥ t1. Proceeding as in the proof of Lemma 2.5, we again arrive at (2.2). Since z(t)
satisfies Case (I), in view of Lemma 2.2 with n = 2, we have

z(t)
z′(t) ≥

t

2 for t ≥ t1. (2.8)

From (2.6) and (2.8), we see that
(
z(t)
m(t)

)′
= 1
m2(t) [z′(t)m(t)− z(t)m′(t)]

≤ z(t)
tm2(t) [2m(t)− tm′(t)] ≤ 0,

and so z(t)/m(t) is nonincreasing. Using this and noting that τ(t) < t implies
τ−1(t) ≤ τ−1(τ−1(t)), we obtain

m(τ−1(τ−1(t)))z(τ−1(t))
m(τ−1(t)) ≥ z(τ−1(τ−1(t))). (2.9)
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Substituting (2.9) into (2.2) gives

x(t) ≥ p∗(t)z
(
τ−1(t)

)
. (2.10)

In view of (1.1) and (2.10), we arrive at (2.7) and this completes the proof of the lemma.

Remark 2.7. The assumption concerning the existence of an auxiliary function m
holds, for example, for m(t) = t2, m(t) = t3, m(t) = et, m(t) = tγeεt with γ ≥ 2 and
ε ≥ 0, etc.

Our first main result is contained in the following theorem.
Theorem 2.8. Assume that conditions (i)–(ii), (1.2), and (2.1) hold and there exists
a function m ∈ C1 ([t0,∞), (0,∞)) such that (2.6) holds, p∗(t) > 0, and p∗(t) > 0 for
sufficiently large t. If there exists a positive function η ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

t∫

t0

[
η(s)q(s) (p∗(δ(s)))α

(
τ−1(δ(s))

s

)2α

− η′+(s)
(

8
s2

)α]
ds =∞, (2.11)

then any solution of (1.1) is either oscillatory or tends to zero as t→∞.
Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we may
assume that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0,
(2.6) holds, p∗(t) > 0, p∗(t) > 0, τ−1(δ(t)) > t0, and z(t) satisfies either Case (I) or
Case (II) for t ≥ t1.

Assume that Case (I) holds and define

w(t) = η(t) (z′′(t))α

zα(t) for t ≥ t1. (2.12)

Then w(t) > 0, and from (2.12) and (2.7), we see that, for t ≥ t1,

w′(t) = η′(t) (z′′(t))α

zα(t) + η(t)
[(

(z′′(t))α
)′

zα(t) − (z′′(t))α (zα(t))′

z2α(t)

]

≤ η′+(t) (z′′(t))α

zα(t) − η(t)q(t) (p∗(δ(t)))α
(
z
(
τ−1(δ(t))

))α

zα(t)

− αη(t) (z′′(t))α z′(t)
zα+1(t) .

(2.13)

From Lemma 2.2, we have
z′(t)
z(t) ≤

2
t

for t ≥ t1, (2.14)

so integrating (2.14) from τ−1(δ(t)) > t1 to t, we obtain

z(t)
z (τ−1(δ(t))) ≤

(
t

τ−1(δ(t))

)2
. (2.15)
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Since z(t) satisfies Case (I), we obtain

z′(t) = z′(t1) +
t∫

t1

z′′(s)ds ≥ (t− t1) z′′(t) ≥ t

2z
′′(t) for t ≥ t2 := 2t1. (2.16)

Integrating (2.16) from t2 to t gives

z(t) ≥ z(t2) +
t∫

t2

s

2z
′′(s)ds ≥ 1

4z
′′(t)(t+ t2)(t− t2) ≥ t2

8 z
′′(t) for t ≥ t3 := 2t2.

(2.17)
Using (2.15), (2.16), and (2.17) in (2.13), we obtain

w′(t) ≤ η′+(t)
(

8
t2

)α
− η(t)q(t) (p∗(δ(t)))α

(
τ−1(δ(t))

t

)2α

− αtw(α+1)/α(t)
2η1/α(t) (2.18)

for t ≥ t3, for some t3 ≥ t2. Since w(t) > 0, (2.18) yields

w′(t) ≤ η′+(t)
(

8
t2

)α
− η(t)q(t) (p∗(δ(t)))α

(
τ−1(δ(t))

t

)2α

. (2.19)

Integrating (2.19) from t3 to t, we obtain
t∫

t3

[
η(s)q(s) (p∗(δ(s)))α

(
τ−1(δ(s))

s

)2α

− η′+(s)
(

8
s2

)α]
ds ≤ w(t3),

which contradicts (2.11).
This implies Case (II) holds, and so from Lemma 2.5, we have limt→∞ x(t) = 0.

This completes the proof of the theorem.

Our next theorem is in the same spirit as the previous one. Its proof makes use of
Lemma 2.1.
Theorem 2.9. Assume that conditions (i)–(ii), (1.2), and (2.1) hold and there exists
a function m ∈ C1 ([t0,∞), (0,∞)) such that (2.6) holds, p∗(t) > 0, and p∗(t) > 0 for
sufficiently large t. If there exists a positive function η ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

t∫

t0

[
η(s)q(s) (p∗(δ(s)))α

(
τ−1(δ(s))

s

)2α

− 2α

(α+ 1)α+1

(
η′+(s)

)α+1

(sη(s))α

]
ds =∞,

(2.20)
then any solution of (1.1) is either oscillatory or tends to zero as t→∞.
Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we may
assume that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0,
(2.6) holds, p∗(t) > 0, p∗(t) > 0, τ−1(δ(t)) > t0, and z(t) satisfies either Case (I) or
Case (II) for t ≥ t1.
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Assume Case (I) holds. Proceeding as in the proof of Theorem 2.8, we again arrive
at (2.13), (2.15), and (2.16). Using (2.12), (2.15), and (2.16) in (2.13), we obtain

w′(t) ≤ η′+(t)
η(t) w(t)−η(t)q(t) (p∗(δ(t)))α

(
τ−1(δ(t))

t

)2α

− αt

2η1/α(t)w
(α+1)/α(t) (2.21)

for t ≥ t3.
Applying Lemma 2.1 with

X = (αt)1/λ

(
2η1/α(t)

)1/λw(t), λ = α+ 1
α

,

and

Y =
[

α

α+ 1

(
2η1/α(t)

)1/λ

(αt)1/λ
η′+(t)
η(t)

]α
,

we obtain

η′+(t)
η(t) w(t)− αt

2η1/α(t)w
(α+1)/α(t) ≤ 2α

(α+ 1)α+1

(
η′+(t)

)α+1

(tη(t))α ,

and substituting this into (2.21) gives

w′(t) ≤ −η(t)q(t) (p∗(δ(t)))α
(
τ−1(δ(t))

t

)2α

+ 2α

(α+ 1)α+1

(
η′+(t)

)α+1

(tη(t))α .

Integrating from t3 to t gives
t∫

t3

[
η(s)q(s) (p∗(δ(s)))α

(
τ−1(δ(s))

s

)2α

− 2α

(α+ 1)α+1

(
η′+(s)

)α+1

(sη(s))α

]
ds ≤ w(t3),

which contradicts (2.20). Therefore Case (II) holds, and so limt→∞ x(t) = 0 by
Lemma 2.5. This proves the theorem.

Our next result is for the situation where α ≥ 1.

Theorem 2.10. Let α ≥ 1. In addition to conditions (i)–(ii), (1.2), and (2.1),
assume that there exists a function m ∈ C1 ([t0,∞), (0,∞)) such that (2.6) holds,
p∗(t) > 0, and p∗(t) > 0 for sufficiently large t. If there exists a positive function
η ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

t∫

t0

[
η(s)q(s) (p∗(δ(s)))α

(
τ−1(δ(s))

s

)2α

−
(
η′+(s)

)2

24−3ααs2α−1η(s)

]
ds =∞,

(2.22)
then any solution of (1.1) is either oscillatory or tends to zero as t→∞.
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Proof. Let x be a nonoscillatory solution of (1.1). We may assume, without loss of
generality, that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0,
(2.6) holds, p∗(t) > 0, p∗(t) > 0, τ−1(δ(t)) > t0, and z(t) satisfies either Case (I) or
Case (II) for t ≥ t1.

Assuming Case (I) holds and proceeding as in the proof of Theorem 2.9, we again
obtain (2.21), which can be written as

w′(t) ≤ η′+(t)
η(t) w(t)− η(t)q(t) (p∗(δ(t)))α

(
τ−1(δ(t))

t

)2α

− αt

2η1/α(t)w
2(t)w 1

α−1(t).

(2.23)
In view of (2.12) and (2.17), for t ≥ t3 we have

w
1
α−1(t) = η

1
α−1(t)

(
(z′′(t))α

zα(t)

) 1
α−1

= η
1
α−1(t)

(
z(t)
z′′(t)

)α−1
≥ η 1

α−1(t)
(
t2

8

)α−1

.

(2.24)
Using this in (2.23), we obtain

w′(t) ≤ η′+(t)
η(t) w(t)− η(t)q(t) (p∗(δ(t)))α

(
τ−1(δ(t))

t

)2α

− αt2α−1

23α−2η(t)w
2(t). (2.25)

Completing the square with respect to w, it follows from (2.25) that

w′(t) ≤ −η(t)q(t) (p∗(δ(t)))α
(
τ−1(δ(t))

t

)2α

+
(
η′+(t)

)2

24−3ααt2α−1η(t) .

Integrating this inequality from t3 to t gives

t∫

t3

[
η(s)q(s) (p∗(δ(s)))α

(
τ−1(δ(s))

s

)2α

−
(
η′+(s)

)2

24−3ααs2α−1η(s)

]
ds ≤ w(t3),

which contradicts (2.22).
If Case (II) holds, then again from Lemma 2.5, we have limt→∞ x(t) = 0, to

complete the proof of the theorem.

Next, we present two results for the case where (1.3) holds.

Theorem 2.11. In addition to conditions (i)–(ii), (1.3), and (2.1), assume that
there exists a function m ∈ C1 ([t0,∞), (0,∞)) such that (2.6) holds, p∗(t) > 0, and
p∗(t) > 0 for sufficiently large t. If there exists a positive function η ∈ C1 ([t0,∞),R)
such that

lim sup
t→∞

t∫

t0

[
η(s)q(s) (p∗(δ(s)))α − η′+(s)

(
8
s2

)α]
ds =∞, (2.26)

then any solution of (1.1) is either oscillatory or tends to zero as t→∞.
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Proof. Let x be a nonoscillatory solution of (1.1). We may assume, without loss of
generality, that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0,
(2.6) holds, p∗(t) > 0, p∗(t) > 0, τ−1(δ(t)) > t0, and z(t) satisfies either Case (I) or
Case (II) for t ≥ t1.

Assume Case (I) holds and proceed as in the proof of Theorem 2.8 to arrive at
(2.13), (2.16), and (2.17). In view of (1.3), we have

t ≤ τ−1(δ(t)),

and so we obtain
z
(
τ−1(δ(t))

)

z(t) ≥ 1. (2.27)

Using (2.16), (2.17) and (2.27) in (2.13), we arrive at

w′(t) ≤ η′+(t)
(

8
t2

)α
− η(t)q(t) (p∗(δ(t)))α −

αtw(α+1)/α(t)
2η1/α(t) . (2.28)

The remainder of the proof is similar to that of Theorem 2.8, and so the details are
omitted.

Theorem 2.12. In addition to conditions (i)–(ii), (1.3), and (2.1), assume that
there exists a function m ∈ C1 ([t0,∞), (0,∞)) such that (2.6) holds, p∗(t) > 0, and
p∗(t) > 0 for sufficiently large t. If there exists a positive function η ∈ C1 ([t0,∞),R)
such that

lim sup
t→∞

t∫

t0

[
η(s)q(s) (p∗(δ(s)))α −

2α

(α+ 1)α+1

(
η′+(s)

)α+1

(sη(s))α

]
ds =∞, (2.29)

then any solution of (1.1) is either oscillatory or tends to zero as t→∞.

Proof. The proof follows from (2.27) and Theorem 2.9.

Our final theorem in this paper is again for the case α ≥ 1.

Theorem 2.13. Let α ≥ 1. In addition to conditions (i)–(ii), (1.3), and (2.1),
assume that there exists a function m ∈ C1 ([t0,∞), (0,∞)) such that (2.6) holds,
p∗(t) > 0, and p∗(t) > 0 for sufficiently large t. If there exists a positive function
η ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

t∫

t0

[
η(s)q(s) (p∗(δ(s)))α −

(
η′+(s)

)2

24−3ααs2α−1η(s)

]
ds =∞, (2.30)

then any solution of (1.1) is either oscillatory or tends to zero as t→∞.

Proof. The proof follows from (2.27) and Theorem 2.10.
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We conclude this paper with two examples to illustrate our results.

Example 2.14. Consider third order neutral differential equation


((

x(t) + 5t+ 6
t+ 1 x(t/2)

)′′)1/5


′

+ β

t7/5
x1/5(t/3) = 0, t ≥ 1. (2.31)

Here we have α = 1/5, τ(t) = t/2, δ(t) = t/3, q(t) = βt−7/5 and p(t) = (5t+ 6)/(t+ 1).
Since p(t) = 5 + 1/(t+ 1), we have

5 ≤ p(t) < 6,

and so p∗(t) > 2/15. With m(t) = t2, we obtain p∗(t) > 1/30. Thus,

∞∫

t0

∞∫

v



∞∫

u

q(s) (p∗(δ(s)))α ds




1/α

dudv >

∞∫

1

∞∫

v



∞∫

u

βs−7/5 (2/15)1/5
ds




5

dudv

= β5
(

2/15
)(5

2

)5
∞∫

1

∞∫

v

1
u2 dudv

= 1
3

(5
2

)4
β5
∞∫

1

1
v
dv =∞,

so condition (2.1) holds.
With η(t) = t, condition (2.11) becomes

lim sup
t→∞

t∫

t0

[
η(s)q(s) (p∗(δ(s)))α

(
τ−1(δ(s))

s

)2α

− (η′(s))+

(
8
s2

)α]
ds

>

t∫

1

[
sβs−7/5

(
1
30

)1/5(2
3

)2/5
−
(

8
s2

)1/5
]
ds

=
t∫

1

[
β 5
√

2/135
s2/5 −

(
8
s2

)1/5
]
ds =∞

for β > 5
√

540, i.e., condition (2.11) holds. Therefore, by Theorem 2.8, any solution
of (2.31) is either oscillatory or converges to zero.

Example 2.15. Consider third order neutral differential equation


((

x(t) + 256x
( t

4

))′′)3


′

+ tx3(t− 1) = 0, t ≥ 2. (2.32)
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Here we have α = 3, τ(t) = t/4, δ(t) = t− 1, q(t) = t and p(t) = 256. It is clear that
p∗(t) = 255/48 > 0. With m(t) = t3, we get p∗(t) = 3/45 > 0. Since

∫∞
u
sds =∞ for

u ≥ t0 = 2, we see that

∞∫

t0

∞∫

v



∞∫

u

q(s) (p∗(δ(s)))α ds




1/α

dudv =
(

255
48

) ∞∫

2

∞∫

v



∞∫

u

sds




3

dudv =∞,

and so condition (2.1) holds. With η(t) = t and T = 2, condition (2.29) becomes

lim sup
t→∞

t∫

T

[
η(s)q(s) (p∗(δ(s)))α −

2α

(α+ 1)α+1
(η′(s))α+1

+
(sη(s))α

]
ds

= lim sup
t→∞

t∫

2

[
s2 (3/45)3 − 8

44
1
s6

]
ds =∞,

i.e., condition (2.29) holds. Therefore, by Theorem 2.12, a solution of (2.32) is either
oscillatory or converges to zero.

Remark 2.16. The results of this paper can easily be extended to third order neutral
dynamic equations of the form

[(
(x(t) + p(t)x(τ(t)))∆∆

)α]∆
+ q(t)xα(δ(t)) = 0

on an arbitrary time scale T with supT =∞, where α > 0 is the ratio of odd positive
integers, p, q ∈ Crd (T, (0,∞)), p(t) ≥ 1, p(t) 6≡ 1 eventually, τ , δ, τ−1(τ−1), τ−1(δ) ∈
Crd(T,T) with τ strictly increasing, τ(t) < t, and limt→∞ τ(t) = limt→∞ δ(t) =∞.
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