PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The design of method intended for implementation of collaborative assembly tasks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the main trends in industrial robotics is collaboration between human and robot. Collaboration is applied especially in the field of assembly tasks. The current automation technology is not at the level that could ensure demanding tasks. These tasks are often associated with actions requiring human skills. Many manufacturers of industrial robot offer a solution in a form of a collaborative robot. These robots represent new opportunities for industry. In order to further develop the area of collaborative robotics, it is necessary to look for new technologies. This article deals with design of method which is based on open source platform. The method is applied to solve a real assembly task.
Twórcy
  • University of Žilina, Faculty of Mechanical Engineering, Univerzitna 1, 010 26, Žilina, Slovak Republic
autor
  • University of Žilina, Faculty of Mechanical Engineering, Univerzitna 1, 010 26, Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Univerzitna 1, 010 26, Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Univerzitna 1, 010 26, Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Univerzitna 1, 010 26, Žilina, Slovak Republic
Bibliografia
  • 1. Bischhoff R., Kurth J. and Schreiber G. The KUKA-DLR Lightweight Robot arm – a new reference platform for robotics research and manufacturing. 41th International Symposium on and 6th German Conference on Robotics (ROBOTIK), Germany, 2010, 1–8.
  • 2. Bolmsjö G., Bennulf M. and Zhang, X. Safety System for Industrial Robots to Support Collaboration. Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future, 490, 2016, 253–265.
  • 3. Bulej V. Innovative and non-standard applications of mechanisms with parallel kinematic structure. Mechanization and automation equipment for processing. Publishing House Alma Mater, 2015, 164–208.
  • 4. Chan P.W., Parker C. and Croft E. A human-inspired object handover controller. The international Journal of Robotic Research, 32(8), 2013, 971–983.
  • 5. Cherubini A., Passama R. and Crosnier A. Collaborative manufacturing with physical human-robot interaction. Robots and Computer-Integrated Manufacturing, Elsevier, 40, 2016, 1-13.
  • 6. Císar M. Diagnosis of equipments. Mechanization and automation equipment for processing. Publish-ing House Alma Mater, 2015, 209–240.
  • 7. Čuboňová N. and Císar M. Design of camera mount and its application for monitoring machining process. Advances in science and technology research journal, 9(26), 2015, 34–40.
  • 8. Dodok T., Čuboňová N., Rudowska A. Analysis of shapes for the development of algorithms for stra-tiegies of machining porcess in the CAM systems. Academic Journal of Manufacturing Engineering, Editura Politehnica, 15(1), 2017, 6–10.
  • 9. GitHub. Libfreenect. 2017. Available at: https:// github.com/OpenKinect/libfreenect
  • 10. Gleeson B., Currie K., MacLean K.E. and Croft E.A. Tap and Push: Assessing the Value of Direct Physical Control in Human-Robot Collaborative Tasks. Journal of Human Robot Interaction, 4(1), 2015, 95–113.
  • 11. International Federation of Robotics: Presentation Market Overview World Robotics, 2016. Frankfurt. Available at: https://ifr.org/downloads/ press/02_2016/Presentation_market_overview-World_Robotics_29_9_2016.pdf
  • 12. ISO 10218–1:2006 Robots and robotic devices – Safety requirements of industrial robots – Part 1: Robots.
  • 13. ISO/TS 15066:2016 Robots and robotic devices – Collaborative robots.
  • 14. Krig, S. Computer vision metrics: Survey, taxonomy, and analysis. Apress, 2014.
  • 15. ROS: About ROS. 2017, Available at: http://www. ros.org/
  • 16. ROS: Fanuc. 2017 Available at: http://wiki.ros.org/ fanuc
  • 17. ROS: Supported hardware. 2017 Available at:http://wiki.ros.org/Industrial/supported_hardware#Industrial. 2BAC8-supported_hardware.2BAC8-indigo. fnref-2620162c8cce0453331f542be82c6d2a555c07e0
  • 18. Sága, M., Vaško, M., Čuboňová, N. and Piekarska, W. Optimisation Algorithms in Mechanical Engi-neering Applications. Pearson, 2016.
  • 19. Tsarouchi P., Matthaiakis A. S., Makris S. and Chryssolouris G. On a human-robot collaboration in an assembly cell. International Journal of Computer Integrated Manufacturing, 30(6), 2017, 580–589.
  • 20. Uríček J. and et al. The Calculation of Inverse Kinematic for 6DOF Serial Robot, Communications –Scientific Letters of the University of Zilina, 16(3A), 2014, 154–160.
  • 21. WU, Hongmin and et al. Kinect-based robotic manipulation: From human hand to end-effector. Industrial Electronics and Applications (ICIEA), IEEE 10th Conference on, 2015, 806–811.
  • 22. Zheng M., Moon A. and Croft E.A. Impact of Robot Gaze on Robot-Human Handovers. International Journal of Social Robotics, 7(5), 2015, 783–798.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ee06803-d874-44be-8063-b60fa9fe0358
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.