PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the soil quality in the vicinity of Inowrocław soda plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aims of this study were to assess the quality of soils affected by strongly saline waste products and to analyze the spatial distribution pattern of soil properties influenced by a soda plant. Soil samples were analyzed for electrical conductivity (EC), sodium adsorption ratio (SAR), pH, trace element content and dehydrogenases activity. The research was conducted in the vicinity of the waste ponds of the Ciech Soda Poland S.A. company (Central Poland), where 35 groundwaters, 63 surface (0–20 cm) and 60 subsurface (80–100 cm) samples were collected. Although the waste ponds are currently not used for regular disposal of waste products, a high level of salinity of groundwater and soil, especially in the subsurface layer, is still being observed. The electrical conductivity of soil saturation extract (ECse) values varied between 0.9–15.4 and 1.0–87.2 dS·m-1 for surface and subsurface layer, respectively. Analysis of the spatial distribution of soil salinity reveals a correlation with microrelief and groundwater levels. Maps of the spatial distribution of heavy metals showed that their content in the subsurface layer was a result of chemical migration from the waste ponds, and in the surface layer by other sources (atmospheric deposition). The soil salinity did not influence dehydrogenases activity.
Rocznik
Strony
58--67
Opis fizyczny
Bibliogr.44 poz., rys., tab., wykr.
Twórcy
  • Poznań University of Life Sciences, Poland
autor
  • Poznań University of Life Sciences, Poland
autor
  • Poznań University of Life Sciences, Poland
  • Poznań University of Life Sciences, Poland
Bibliografia
  • 1. Acosta, J., Jansen, B., Kalbitz, K., Faz, A. & Martínez-Martínez,S. (2011). Salinity increases mobility of heavy metals in soils, Chemosphere, 85, 8, pp. 1318-1324.
  • 2. Baran, A. & Wieczorek, J. (2015). Application of geochemical and ecotoxicity indieces for assessment of heavy metals content in soils, Archives of Environmental Protection, 41, 2, pp. 54-63.DOI: 10.1515/aep-2015-0019.
  • 3. Cieśla, W., Dąbkowska-Naskręt, H. & Siuda, W. (1981). Soil salinity state in the vicinity of the Inowrocław soda plant at Mątwy, SoilScience Annual XXXII, 2, pp.103-113. (in Polish)
  • 4. DERM (the state of Queensland Department of Environment and Resource Management), (2011). Salinity management handbook. Second edition. Queensland Australia.
  • 5. Doran, J.W. (1996). Methods for assessing soil quality, Soil Science of America Special Publication, Madison, 49, pp. 410.
  • 6. Doran, J.W. & Parkin, T.B. (1996). Quantitative indicators of soil quality: a minimum data set, In: Methods for assessing soil quality, Doran, J.W. & Jones A.J. (Eds.). Soil Science of America Special Publication, Madison 1996.
  • 7. Doran, J.W. & Zeiss, M.R. (2000). Soil health and sustainability:managing the biotic component of soil quality, Applied Soil Ecology 15, pp. 3-11.
  • 8. Du Laing, G., De Vos, R., Vandecasteele, B., Leasage, E., Tack, F.& Verloo, M. (2008). Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary, Estuarine, Coastal and Shelf Science, 77, 4, pp. 589-602.
  • 9. Garcia, C. & Hernandez, T. (1996). Influence of salinity on the biological and biochemical activity of a calcior third soil, Plantand Soil, 178, pp. 255-263.
  • 10. Gil-Sotres, F., Trasar-Cepeda, C., Leirós, M. C. & Seoane, S. (2005).Different approaches to evaluating soil quality using biochemicalproperties, Soil Biology & Biochemistry, 37, pp. 877-887.
  • 11. Grzebisz, W., Cieśla, L., Komisarek, J. & Potarzycki, J. (2002).Geochemical assessment of heavy metals pollution of Urban soils, Polish Journal of Environmental Studies, 11, 5, pp. 493-499.
  • 12. Guangming, L., Xuechen, Z., Xiuping, W., Hongbo, S., Jingsong, Y.& Xiangping, W. (2017) Soil enzymes as indicators of saline soil fertility under various soil amendments, Agriculture, Ecosystems and Environment, 237, pp. 274-279.
  • 13. Hanif, N., Egani, S.A.M.A.S., Ali, S.M., Cincinelli, A., Ali, N., Katsoyjannis, I.A., Tanveer, Z.I. & Bokhari, H. (2016). Geo-accumulation and enrichment of trace metals in sediments and their associated risks in the Chenab River, Pakistan, Journal of Geochemical Exploration, 165, pp. 62-70.
  • 14. Hulisz, P. (2003). Soil salinity in the vicinity of Inowrocław (Poland)due to the effect of soda industry, Abstract, SUITMA Conference, Nancy, pp. 159-160.
  • 15. Hulisz, P. (2008). Quantitative and qualitative differentiation of soil salinity in Poland, Berichte der Deutschen Bodenkundlichen Gesellschaft, 1, pp. 1-4.
  • 16. Hulisz, P. & Piernik, A. (2011). The influence of the waste products of soda plant on plants and soil In Inowrocław-Mątwy, In: Selected problem of soil Genesis, systematic, land use and protection in the Kujawsko-pomorski region, Jankowski, M. (Eds.). (in Polish)
  • 17. Hulisz, P. & Piernik, A. (2013). Soil affected by soda industry in Inowrocław, In: Technogenic soils of Poland, Charzyński, P., Hulisz, P. & Bednarek, R., Polish Society of Soil Science, Toruń2013.
  • 18. Kabata-Pendias, A. & Pendias, H. (2001). Trace elements in soils and plants, 5rd ed. CRC Press, Boca Raton 2001.
  • 19. Kadkhodaie, A., Kelich, S. & Baghbani, A. (2012). Effects of salinity levels on heavy metals (Cd, Pb and Ni) adsorption by sunflower and sudangrass plants, Bulletin of Environment, Pharmacology and Life Sciences, 1, 12, pp. 47-53.
  • 20. Karlen, D.L., Mausbach, M.J., Doran, J.W., Cline, R.G., Harris, R.F.& Schuman, G.E. (1997). Soil quality: a concept, definition, and framework for evaluation, Soil Science Society of America Journal, 61, pp. 4-10.
  • 21. Lal, R. (1998). Basic concepts and global issues: soil quality and agricultural sustainability, In: Soil Quality and Agricultural Sustainability, Lal, R. (Eds.). Ann Arbor Science, Chelsea, MI,USA 1998.
  • 22. Li, Y., Dong, S., Wen, L., Wang, X. & Wu, Y. (2013). Assessing the soil quality of alpine grasslands in the Qinhai-Tibetan Plateauusing a modified soil quality index, Environmental Monitoring and Assessment, 185, pp. 8011-8022.
  • 23. Marek, S. & Znosko, J. (1972). Tectonics of the Kujawy region, Geological Quaterly, 16, No. 1, pp. 1-18. (in Polish)
  • 24. Markiewicz, A., Płaza, G. & Piotrowska-Seget, Z. (2016). Acitivity and functional diversity of microbial communities in long-termhydrocarbon and heavy metal contaminated soils, Archives of Environmental Protection, 42, 4, pp. 3-11. DOI: 10.1515/aep-2016-0041
  • 25. Müller, G. (1969). Index of geo-accumulation in sediments of theRihne River, GeoJournal, 2, pp. 108-118.
  • 26. Oldeman, L.R. (1994). The global extent of soil degradation, In:Soil Resilience and Sustainable Land Use, Greenland, D.J. &Szabolcs, I. (Eds.). CAB International, Wallingford, Oxon, UK1994.
  • 27. Oren, A. (1999). Bioenergetic aspects of halophilism, Microbiologyand Molecular Biology Reviews, 63, pp. 334-340.
  • 28. Öberg, G.M. (2003). The Biogeochemistry of Chlorine in Soil, In:The Handbook of Environmental Chemistry, 3, Part P, pp. 43-62.DOI: 10.1007/b 10447.
  • 29. Piernik, A., Kaźmierczak, E. & Rutkowski, L. (1996). Differentiation of vegetation in a saline grassland in the vicinity of Inowrocław Soda Plants at Mątwy, Acta Societatis Botanicorum Poloniae,65, 3-4, pp. 349-356.
  • 30. PN-EN 27888 (1999). Water quality - Determination of electrical conductivity (ISO 7888:1985).
  • 31. PN-EN ISO 10523 (2012). Water quality - Determination of pH.
  • 32. PN-ISO 10390 (1997). Soil Quality - determination of pH.
  • 33. PN-ISO 11265+AC 1 (1997). Soil quality - Determination of the specific electrical conductivity.
  • 34. PN-ISO 9297 (1994). Water quality - determination of chloride- silver nitrate titration with chromate indicator (Mohr’s method).
  • 35. Sherene, T. (2010). Mobility and transport of heavy metals in polluted soil environment, Biological Forum - An International Journal2, 2, pp. 112-121.
  • 36. Singh, K. (2015) Microbial and enzyme activities of saline and sodic soils, Land Degradation & Development 27, 3, pp. 706-718.DOI: 10.1002Mr.2385
  • 37. Smith, S.J. (1972). Relative rate of chloride movement in leaching of surface soils, Soil Science, 114, pp. 159-263.
  • 38. Strzelecka, J., Dąbrowski, M., Hulisz, P. & Piernik, A. (2011). Changesin soil properties and plant biomass under the influence of soda waste ponds in Inowrocław, Poland, Ecological Questions 14,pp. 69-71.
  • 39. Tabatabai, M.A. (1982). Soil Enzymes, In: Methods of soil analysis Part 2. Second Edition. American Society of Agronomy Inc.1982.
  • 40. Telesiński, A. (2012). The effect of salinity on some biochemical indices of soil fertility, Water-Environment-Rural Areas, 12, 37, pp. 209-217.
  • 41. van Reeuwijk, L.P. (2002). Procedures for soil analysis, ISRIC, FAO,six edition, Wageningen 2002.
  • 42. World Reference Base for Soil Resources (2014, update - 2015) International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports Np. 106, FAO, Rome 2015.
  • 43. Yan, N., Marschaner, P., Cao, W., Zuo, Ch. & Qin, W. (2015). Influence of salinity and water content on soil microorganisms, International Soil and Water Conversation Research, 3, pp. 316-323.
  • 44. Zehng, L., Zhang, M., Xiao, R., Chen, J. & Yu, F. (2017). Impact of soil salinity and Pb on enzymes activities of a saline soil from the Yellow River delta: A microcosm study, Physical and Chemistry of the Earth, 97, pp. 77-87.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4edfca08-9982-42cd-944f-13418b3f5d83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.