PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variability of Soil Microorganism Numbers in Response to Exogenous Organic Matter and Water-Absorbing Substrate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to determine the variability of the total numbers of bacteria, actinomycetes and fungi under stress associated with the presence of exogenous organic matter in the soil. Additonaly, the ratio of the total number of bacteria and actinomycetes to the number of fungi was calculated. Another goal of the experiment was to observe the effect of substrates absorbing water and minimizing drought stress on the number of soil microorganisms. Organic waste materials applied to the soil did not significantly affect the number of microorganisms, i.e. bacteria, actinomycetes or the ratio of bacteria and actinomycetes on the one hand to fungi on the other. The results of the research prove the possibility of utilizing organic matter produced by sewage treatment plants, waste treatment plants or mushroom farms as substances enriching the soil of urban green areas.
Słowa kluczowe
Rocznik
Strony
223--233
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Institute of Agriculture and Horticulture, University of Siedlce, ul. Prusa 14, 08-110 Siedlce, Poland
  • Institute of Agriculture and Horticulture, University of Siedlce, ul. Prusa 14, 08-110 Siedlce, Poland
  • Institute of Technology and Life Sciences – National Research Institute, al. Hrabska 3, 05-090 Raszyn, Falenty, Poland
  • Institute of Agriculture and Horticulture, University of Siedlce, ul. Prusa 14, 08-110 Siedlce, Poland
Bibliografia
  • 1. Agadagba S.K. 2014. Isolation of actinomycetes from soil. Journal of Microbiology Research, 4, 136–140. https://doi.org/10.5923/j. microbiology.20140403.02.
  • 2. Allen-King R., Grathwohl P., Ball W. 2002. New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogenous carbonaceous matter in soils, sediments and rocks. Advances in Water Resources, 25, 985–1016. https://doi. org/10.1016/S0309-1708(02)00045-3.
  • 3. Arifuzzaman M., Khatun M.R. Rahman H. 2010. Isolation and screening of actinomycetes from sundarbans soil for antibacterial activity. African Journal of Biotechnology, 9, 4615–4619.
  • 4. Bawazir A.M.A., Shantaram M. 2018. Ecology and distribution of actinomycetes in nature—a review. International Journal of Current Research, 10, 71664–71668.
  • 5. Blagodatskaya E., Kuzyakov Y. 2008. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils, 45, 115–131.
  • 6. Borowik A., Wyszkowska J. 2016a. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant, Soil and Environment, 62, 250–255. https://doi.org/10.17221/158/2016-PSE
  • 7. Borowik A., Wyszkowska J. 2016b. Impact of temperature on the biological properties of soil. International Agrophysics, 30, 1–8. https://doi. org/10.1515/intag-2015-0070
  • 8. Bridge P., Spooner B. 2001. Soil fungi: diversity and detection. Plant and Soil, 232, 147-154.
  • 9. Bunt J.B., Rovira A.D. 1955. Microbiological studies of some subantarctic soils. European Journal of Soil Science, 6. 119–128. https://doi. org/10.1111/j.1365-2389.1955.tb00836.x
  • 10. Dell’Amico E., Cavalca L., Andreoni V. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from pulluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiology Ecology, 52, 153–162. https://doi.org/10.1016/j. femsec.2004.11.005
  • 11. Gałązka A., Kocoń A. 2015. Wpływ preparatów z mikroorganizmami pożytecznymi na liczebność i biomasę mikroorganizmów glebowych [Influence of preparations with beneficial microorganisms on the number and biomass of soil microorganisms]. Studia i Raporty IUNG-PIB, 45, 127–142.
  • 12. Gauze G.F., Preobrazhenskaya T.P., Sveshnikova M.A., Terekhova L.P., Maksimova T.S. 1983. Opredelitel’aktinomitsetov. (Identification Guide for Actinomycetes), Moscow.
  • 13. Glick B.R. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28, 367–373. https://doi.org/10.1016/j. biotechadv.2010.02.001
  • 14. Glick B.R., Todorovic B., Czarny J., Cheng Z., Duan J., McConkey B. 2007. Promotion of plant growth by Bacterial ACC deaminase. Critical Reviews in Plant Sciences, 26, 227–242. https://doi. org/10.1080/07352680701572966
  • 15. Gondek K. 2003. Zawartości metali ciężkich w glebie nawożonej osadami garbarskimi i kompostami tych osadów [Contents of heavy metals in soil fertilized with tannery sludge and compost of these sludge]. Inżynieria Ekologiczna, 9, 112–121.
  • 16. Jeffrey L.S. 2008. Isolation, characterization and identification of actinomycetes from agriculture soils at Semongok, Sarawak. African Journal of Biotechnology, 7, 3697–3702.
  • 17. Kabata-Pendias A., Pendias, H. Biogeochemia pierwiastków śladowych [Biogeochemistry of trace elements]. Warszawa, Wydawnictwo Naukowe PWN 1993.
  • 18. Kallenbach C.M., Frey S.D., Grandy A.S. 2016. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 7, 13630.
  • 19. Martin J. 1950. Use of acid, rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Science, 19, 215–233.
  • 20. Mendes R., Garbeva P., Raaijmakers J.M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37, 634–663. https://doi.org/10.1111/1574-6976.12028
  • 21. Oskay M., Usame A. Azeri C. 2004. Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. African Journal of Biotechnology, 3, 441–446. https://doi.org/10.5897/ AJB2004.000-2087
  • 22. Ranjard L., Richaume A. 2001. Quantitative and qualitative microscale distribution of bacteria in soil. Research in Microbiology, 152, 707–716. https://doi.org/10.1016/S0923-2508(01)01251-7
  • 23. Ren C., Chen J., Lu X., Doughty R., Zhao F., Zhong Z., Han X., Yang G., Feng Y., Ren G. 2018. Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biology and Biochemistry, 116, 4–10. https://doi. org/10.1016/j.soilbio.2017.09.028
  • 24. Ritz K., Young I.N. 2004. Interactions between soil structure and fungi. Mycologist, 18, 52–59. https:// doi.org/10.1017/S0269915x04002010
  • 25. Rousk J., Baath E. 2011. Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiology Ecology, 78, 17–30. https://doi. org/10.1111/j.1574-6941.2011.01106.x
  • 26. Safronova V.I., Stepanok V.V., Engqvit G.L., Alekseyev V., Belimov A.A. 2006. Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biology and Fertility of Soils, 42, 267–272.
  • 27. Sapkota A., Thapa A., Budhathoki A., Sainju M., Shrestha P., Aryal S. 2020. Isolation, characterization, and screening of antimicrobial-producing actinomycetes from siol samples. International Journal of Microbiology, article ID 2716584. https://doi. org/10.1155/2020/2716584
  • 28. Schad, P., van Huyssteen, C., Micheli, E. International soil classification system for naming soils and creating legends for soil maps: World Soil Resources Reports. In World Reference Base for Soil Resources 2014; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014.
  • 29. Silvetti M., Castaldi P., Holm P.E., Deiana S., Lombi E. 2014. Leachability bioaccessibility and plant availability of trace elements in contaminated soils treated with industrial byproducts and subjected to oxidative/ reductive conditions. Geoderma, 214, 204–212. https://doi.org/10.1016/j. geoderma.2013.09.010
  • 30. Solecka, J., Ziemska, J., Rajnisz, A., Laskowska, A., Guśpiel, A. 2013. Promieniowce – występowanie i wytwarzanie związków biologicznie czynnych [Actinomycetes – occurrence and production of biologically active compounds]. Postępy Mictobiologii, 52, 83–91.
  • 31. Unger, I.M., Kennedy, A.C., Muzika, R. 2009. Flooding effects on soil microbial communities. Applied Soil Ecology, 42, 1–8. https://doi.org/10.1016/j. apsoil.2009.01.007
  • 32. Wu, L., Vomocil, J.A., Childs, S.W. 1990. Pore size, particles size, aggregate size, and water retention. Soil Science Society of America Journal, 54, 952–956. https://doi.org/10.1016/S0923-2508(01)01251-7
  • 33. Wuertz, S., Mergeay, M. The impact of heavy metals on soil microbial communities and their activities. In: Modern soil microbiology. Ed. J.D. Van Elsas, J.T. Trevors, E.M.H. Wellington. Marcel Dekker, New York 1997, 607–642.
  • 34. Wyszkowska, J., Boros, E., Kucharski, J. 2007. Effect of interactions between nickel and other heavy metals on the soil microbiological properties. Plant Soil and Environment, 53, 544–552.
  • 35. Zhang, X.Q., Li, Y.S., Li, H. 2017. Enhanced BioImmobilization of Pb contaminated soil by immobilized bacteria with biochar as carrier. Polish Journal of Environment Studies, 26, 413–418. https://doi. org/10.15244/pjoes/64908
  • 36. Zhang, M.Y., Riaz, M., Zhang, L., El-desouki, Z., Jiang, C.C. 2019. Biochar induces changes to basic soil properties and bacterial communities of different soils to varying degree at 25mm rainfall: more effective on acidic soils. Frontiers in Microbiology, 10, 1321. https://doi.org/10.3389/fmicb.2019.01321
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ed61d6d-ae26-46d6-b60a-7239d50e4c8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.