PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of electron beam irradiation on filtering facepiece respirators integrity and filtering efficiency

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The outbreak of the COVID-19 pandemic has shown that the demand for medical masks and respirators exceeds the current global stockpile of these items, and there is a dire need to increase the production capacity. Considering that ionizing radiation has been used for sterilization of medical products for many years and electron beam (EB) irradiation enables the treatment of huge quantities of disposable medical products in a short time this method should be tested for the mask’s decontamination. In this work, three different filtering facepiece respirators (FFRs) were irradiated with electron beams of 12 kGy and 25 kGy. The results confirmed that the decrease in filtration efficiency after irradiation of all respirators results from the elimination of the electric charge from the polypropylene (PP) fibers in the irradiation process. Moreover, the applied doses may affect the thermal stability of PP fabrics, while filtering materials structure and integrity have not changed after irradiation.
Czasopismo
Rocznik
Strony
23--33
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Institute of Nuclear Chemistry and Technology Dorodna 16 Str., 03-195 Warsaw, Poland
  • Warsaw University of Technology Faculty of Chemical and Process Engineering Warynskiego 1 Str., 00-645 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology Dorodna 16 Str., 03-195 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology Dorodna 16 Str., 03-195 Warsaw, Poland
Bibliografia
  • 1. Yu, I. T. S., Li, Y., Wong, T. W., Tam, W., Chan, A. T., Lee, J. H. W., Leung, D. Y. C., & Ho, T. (2004). Evidence of airborne transmission of the severe acute espiratory syndrome virus. N. Engl. J. Med., 350, 1731–1739. DOI: 10.1056/nejmoa032867.
  • 2. Neeltje van Doremalen, V. J. M., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., & de Wit, E. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med., 382, 1564–1567. DOI: 10.1056/NEJMc2004973.
  • 3. Morawska, L., & Cao, J. (2020). Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int., 139, 105730. DOI: 10.1016/j.envint.2020.105730.
  • 4. Morawska, L., Johnson, G. R., Ristovski, Z. D., Hargreaves, M., Mengersen, K., Corbett, S., Chao, C. Y. H., Katoshevski, Y., & Li, D. (2009). Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities.J. Aerosol Sci., 40, 256–269. DOI: 10.1016/j.jaerosci.2008.11.002.
  • 5. The Polish Committee for Standardization. (2010). Respiratory protective devices. Filtering half masks to protect against particles. Requirements, testing, marking. PN-EN 149+A1:2010 (in Polish).
  • 6. Dowd, K. O., Nair, K. M., Forouzandeh, P., Mathew, S., Grant, J., Moran, R., Bartlett, J., Bird, J., & Pillai, S. C. (2020). Face masks and respirators in the fight against the COVID-19 pandemic: A review of current materials, advances and future perspectives. Materials, 13(2), 3363. DOI: 10.3390/ma13153363.
  • 7. Zhang, H., Liu, J., Zhang, X., Huang, C., & Jin, X. (2018). Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture. RSC Adv., 8, 7932–7941.DOI: 10.1039/c7ra10916d.
  • 8. Midha, V. K., & Dakuri, A. (2017). Spun bonding technology and fabric properties: A review. J. Text. Eng. Fash. Technol., 1, 126–133. DOI: 10.15406/jteft.2017.01.00023.
  • 9. Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer (Guildf), 49, 5603–5621. DOI: 10.1016/j.polymer.2008.09.014.
  • 10. Pandey, L. K., Singh, V. V., Sharma, P. K., Meher, D., Biswas, U., Sathe, M., Ganesan, K., Thakare, V. B., & Agarwal, K. (2021). Screening of core filter layer for the development of respiratory mask to combat COVID-19. Sci. Rep., 11, 1–14. DOI: 10.1038/s41598-021-89503-x.
  • 11. Hutten, I. M. (2007). Processes for nonwoven filter media. In Handbook of nonwoven filter media.(Chapter 5, pp. 195–244). Oxford: ButterworthHeinemann.
  • 12. Chua, M. H., Cheng, W., Goh, S. S., Kong, J., Li, B., Lim, J. Y. C., Mao, L., Wang, S., Xue, K., Yang, L.,
  • Ye, E., Zhang, K., Cheong, W. C. D., Tan, B. H., Li, Z., Tan, B. H., & Loh, X. J. (2020). Face masks in the new COVID-19 normal: Materials, testing, and perspectives. Research (Wash DC), 2020, 1–40. DOI:10.34133/2020/7286735.
  • 13. Khayan, K., Anwar, T., Wardoyo, S., & Puspita, W. L. (2019). Active carbon respiratory masks as the adsorbent of toxic gases in ambient air. J. Toxicol., 2019, 5283971. DOI: 0.1155/2019/5283971.
  • 14. Fouad, G. I. (2021). A proposed insight into the antiviral potential of metallic nanoparticles against novel coronavirus disease-19 (COVID-19). Bull. Natl. Res. Cent., 45(1), 36. DOI: 10.1186/s42269-021-00487-0.
  • 15. Hinds, W. C. (1999). Aerosol technology: properties, behavior, and measurement of airborne particles. Los Angeles: Wiley. 16. Brown, R. C. (1993). Air filtration: an integrated approach to the theory and applications of fi brous filters. Oxford; New York: Pergamon Press.
  • 17. Zhang, S., Rind, N. A., Tang, N., Liu, H., Yin, X., Yu, J., & Ding, B. (2019). Electrospun nanofibers for air filtration. In B. Ding, X. Wang & J. Yu (Eds.), Electrospinning nanofabrication application (pp. 365–389). William Andrew Publishing.
  • 18. Choi, D. Y., An, E. J., Jung, S. H., Song, D. K., Oh, Y. S., Lee, H. W., & Lee, H. M. (2018). Al-coated conductive fiber filters for high-efficiency electrostatic filtration: Effects of electrical and fiber structural properties. Sci. Rep., 8, 1–10. DOI: 10.1038/s41598-018-23960-9.
  • 19. Wang, C. S. (2001). Electrostatic forces in fibrous filters – A review. Powder Technol., 118, 166–170.DOI: 10.1016/S0032-5910(01)00307-2.
  • 20. Oh, Y. W., Jeon, K. J., Jung, A. Y., & Jung, Y. W. (2002). A simulation study on the collection of submicron particles in a unipolar charged fiber. Aerosol Sci. Technol., 36, 573–582. DOI: 10.1080/02786820252883810.
  • 21. Yang, S., & Lee, G. W. M. (2005). Filtration characteristics of a fibrous filter pretreated with anionic surfactants for monodisperse solid aerosols. J. Aerosol Sci., 36, 419–437. DOI: 10.1016/j.jaerosci.2004.10.002.
  • 22. Schwartz, A., Stiegel, M., Greeson, N., Vogel, A., Thomann, W., Brown, M., Sempowski, G. D., Alderman, T. S., Condreay, J. P., Burch, J., Wolfe, C., Smith, B., & Lewis, S. (2020). Decontamination and reuse of N95 respirators with hydrogen peroxide vapor to address worldwide personal protective equipment shortages during the SARS-CoV-2 (COVID-19) pandemic. Appl. Biosaf., 25, 67–70. DOI: 10.1177/1535676020919932.
  • 23. Viscusi, D. J., Bergman, M. S., Eimer, B. C., & Shaffer, R. E. (2009). Evaluation of five decontamination methods for filtering facepiece respirators. Ann. Occup. Hyg., 53, 815–827. DOI: 10.1093/annhyg/mep070.
  • 24. Mackenzie, D. (2020). Reuse of N95 masks. Engineering (Beijing), 6, 593–596. DOI: 10.1016/j.eng.2020.04.003.
  • 25. Lindsley, W. G., Martin, S. B., Thewlis, R. E., Sarkisian, K., Nwoko, J. O., Mead, K. R., & Noti, J. D.(2015) Effects of ultraviolet germicidal irradiation (UVGI) on N95 respirator filtration performance and structural integrity. J. Occup. Environ. Hyg., 12, 509–517. DOI: 10.1080/15459624.2015.1018518.
  • 26. Derraik, J. G. B., Anderson, W. A., Connelly, E. A., & Anderson, Y. C. (2020). Rapid review of SARS-CoV-1 and SARS-CoV-2 viability, susceptibility to treatment, and the disinfection and reuse of ppe, particularly filtering facepiece respirators. Int. J. Environ. Res. Public Health, 17, 1–31. DOI: 10.3390/ijerph17176117.
  • 27. Gertsman, S., Agarwal, A., O’Hearn, K., Webster, R., Tsampalieros, A., Barrowman, N., Sampson, M., Sikora, L., Staykov, E., Ng, R., Gibson, J., Dinh, T., Agyei, K., Chamberlain, G., & McNally, J. D. (2020). Microwave- and heat-based decontamination of N95 filtering facepiece respirators: a systematic review. J. Hosp. Infect., 106, 536–553. DOI: 10.1016/j.jhin.2020.08.016.
  • 28. Chmielewski, A. G. (2007). Practical applications of radiation chemistry. Russ. J. Phys. Chem. A, 81, 488–1492. DOI: 10.1134/S0036024407090270.
  • 29. Chmielewska-Śmietanko, D., Gryczka, U., Migdał, W., & Kopeć, K. (2018). Electron beam for preservation of biodeteriorated cultural heritage paper-based objects. Radiat. Phys. Chem., 143, 89–93. DOI: 10.1016/j.radphyschem.2017.07.008.
  • 30. Commonwealth of Australia. (2014). Gamma irradiation as a treatment to address pathogens of animal biosecurity concern. Retrieved March 23, 2022, from http://www.agriculture.gov.au/SiteCollectionDocuments/ba/memos/2014/gamma-irradiation-review.pdf.
  • 31. Feldmann, F., Shupert, W. L., Haddock, E., Twardoski, B., & Feldmann, H. (2019). Gamma irradiation as an effective method for inactivation of emerging viral pathogens. Am. J. Trop. Med. Hyg., 100, 1275–1277.DOI: 10.4269/ajtmh.18-0937.
  • 32. International Atomic Energy Agency. (2020). Sterilization and reprocessing of personal protective equipment (PPE), including respiratory masks, by ionizing radiation. Vienna: IAEA. Retrieved November 23, 2021, from http://www-naweb.iaea.org/napc/iachem/working_materials/Technical%20Report%20%28Mask%20Reprocessing%29.pdf.
  • 33. International Organization for Standardization. (2013). Sterilization of health care products – Radiation – Part 2: Establishing the sterilization dose. ISO 11137-2:2013. Switzerland.
  • 34. American Society for Testing and Material. (2019).Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method). ASTM D5035-11. West Conshohocken, PA.
  • 35. Jackiewicz, A., & Werner, Ł. (2015). Separation of nanoparticles from air using melt-blown filtering media. Aerosol Air Qual. Res., 15, DOI: 10.4209/aaqr.2015.04.0236.
  • 36. Esmizadeh, E., Tzoganakis, C., & Mekonnen, T. H.(2020). Degradation behaviour of polypropylene during reprocessing and its biocomposites: Thermal and oxidative degradation kinetics. Polymers (Basel),12(8), 1627. DOI: 10.3390/POLYM12081627.
  • 37. Bockhorn, H., Hornung, A., Hornung, U., & Schawaller, D. (1999). Kinetic study on the thermal degradation of polypropylene and polyethylene. J.Anal. Appl. Pyrolysis, 48, 93–109. DOI: 10.1016/S0165-2370(98)00131-4.
  • 38. Bormashenko, E., Pogreb, R., Stein, T., Whyman, G., Schiffer, M., & Aurbach, D. (2011). Electrically deformable liquid marbles. J. Adhes. Sci. Technol., 25, 1371–1377. DOI: 10.1163/016942411x555953.
  • 39. Bormashenko, E., Pogreb, R., Stein, T., Whyman, G.,& Hakham-Itzhaq, M. (2009). Electrostatically driven droplets deposited on superhydrophobic surfaces.Appl. Phys. Lett., 95, 1–3. DOI: 10.1063/1.3276697.
  • 40. International Organization for Standardization. (2016). Air filters for general ventilation – Part 4: Conditioning method to determine the minimum fractional test efficiency. ISO 16890-4:2016. Switzerland.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ed312b6-14b2-4219-a803-ee9116c25299
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.