PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accurate Prediction of the Condensed Phase (Solid or Liquid) Heat of Formation of Triazolium-based Energetic Ionic Salts at 298.15 K

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel method is introduced for the reliable prediction of the condensed phase (solid or liquid) heat of formation (Δf H θ (c)) of triazolium-based energetic ionic salts (EISs) at 298.15 K. It is based on the influence of some specific elemental compositions of cations and anions as additive parts. Two correcting functions, as non-additive quantities, are also used to adjust the first part. The coefficients of the specific elemental compositions of cations and anions in the new correlation, with a negative sign as well as a negative correcting function in the triazolium-based EISs, can decrease the value of Δf H θ (c) for the corresponding EISs. The reported Δf H θ (c) values of 57 different triazolium-based EISs were used to derive the new model. For 34 triazolium-based EISs, where the outputs of quantum mechanical methods were available, the Root Mean Squared Error (RMSE) of the new model was 156.0 kJ/mol. Meanwhile, the RMSE of complicated quantum mechanical methods is very large, i.e. 298.0 kJ/mol. The high reliability of the new model was also confirmed for a further 5 complex triazolium-based EISs as compared to the results of quantum mechanical calculations.
Rocznik
Strony
501--515
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
autor
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
autor
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
Bibliografia
  • [1] Agrawal, J. P. High Energy Materials: Propellants, Explosives and Pyrotechnics. Wiley-VCH, Cornwall, Great Britain 2010; ISBN 9783527326105.
  • [2] Klapötke, T. M. Chemistry of High-Energy Materials. 3rd ed. Walter de Gruyter, Berlin 2015; ISBN 978-3110439335.
  • [3] Keshavarz, M. H.; Abadi, Y. H.; Esmaeilpour, K.; Damiri, S.; Oftadeh, M. Introducing Novel Tetrazole Derivatives as High Performance Energetic Compounds for Confined Explosion and as Oxidizer in Solid Propellants. Propellants Explos. Pyrotech. 2017, 42(5): 492-498.
  • [4] Klapötke, T. M. The Synthesis Chemistry of Energetic Materials. In: Energetics Science and Technology in Central Europe. (Armstrong, R. W., Ed.) CALCE EPSC Press, Maryland 2012, pp. 57-71.
  • [5] Keshavarz, M. H.; Esmailpour, K.; Zamani, M.; Roknabadi, A. G. Thermochemical, Sensitivity and Detonation Characteristics of New Thermally Stable High Performance Explosives. Propellants Explos. Pyrotech. 2015, 40(6): 886-891.
  • [6] Keshavarz, M.; Esmaeilpour, K.; Oftadeh, M.; Abadi, Y. H. Assessment of Two New Nitrogen-rich Tetrazine Derivatives as High Performance and Safe Energetic Compounds. RSC Advances 2015, 5(106): 87392-87399.
  • [7] Roknabadi, A. G.; Keshavarz, M. H.; Esmailpour, K.; Zamani, M. High Performance Nitroazacubane Energetic Compounds: Structural, Thermochemical and Detonation Characteristics. ChemistrySelect 2016, 1(21): 6735-6740.
  • [8] Roknabadi, A. G.; Keshavarz, M. H.; Esmailpour, K.; Zamani, M. Structural, Thermochemical and Detonation Performance of Derivatives of 1,2,4,5-Tetrazine and 1,4-N-oxide 1,2,4,5-Tetrazine as New High-performance and Nitrogen-rich Energetic Materials. Journal of the Iranian Chemical Society 2017, 14(1): 57-63.
  • [9] Keshavarz, M. H.; Abadi, Y. H.; Esmaeilpour, K.; Damiri, S.; Oftadeh, M. Assessment of the Effect of N-oxide Group in a New High-performance Energetic Tetrazine Derivative on Its Physicochemical and Thermodynamic Properties, Sensitivity, and Combustion and Detonation Performance. Chem. Heterocycl. Compd. 2017, 1-5.
  • [10] Keshavarz, M. H.; Abadi, Y. H.; Esmaeilpour, K.; Damiri, S.; Oftadeh, M. A Novel Class of Nitrogen‐rich Explosives Containing High Oxygen Balance to Use as High Performance Oxidizers in Solid Propellants. Propellants Explos. Pyrotech. 2017, 42(10): 1155-1160.
  • [11] Keshavarz, M. H.; Klapötke, T. M.; Sućeska, M. Energetic Materials Designing Bench (EMDB), Version 1.0. Propellants Explos. Pyrotech. 2017, 42(8): 854-856.
  • [12] Argoub, K.; Benkouider, A. M.; Yahiaoui, A.; Kessas, R.; Guella, S.; Bagui, F. Prediction of Standard Enthalpy of Formation in the Solid State by a Third-order Group Contribution Method. Fluid Phase Equilib. 2014, 380(0): 121-127.
  • [13] Nazari, B.; Keshavarz, M. H.; Hamadanian, M.; Mosavi, S.; Ghaedsharafi, A. R.; Pouretedal, H. R. Reliable Prediction of the Condensed (Solid or Liquid) Phase Enthalpy of Formation of Organic Energetic Materials at 298 K through Their Molecular Structures. Fluid Phase Equilib. 2016, 408: 248-258.
  • [14] Jafari, M.; Keshavarz, M. H. Simple Approach for Predicting the Heats of Formation of High Nitrogen Content Materials. Fluid Phase Equilib. 2016, 415: 166-175.
  • [15] Jafari, M.; Keshavarz, M. H.; Noorbala, M. R.; Kamalvand, M. A Reliable Method for Prediction of the Condensed Phase Enthalpy of Formation of High Nitrogen Content Materials through their Gas Phase Information, ChemistrySelect 2016, 1(16): 5286-5296.
  • [16] Zhang, Q.; Shreeve, J. M. Energetic Ionic Liquids as Explosives and Propellant Fuels: a New Journey of Ionic Liquid Chemistry. Chemical Reviews 2014, 114(20): 10527-10574.
  • [17] Sebastiao, E.; Cook, C.; Hu, A.; Murugesu, M. Recent Developments in the Field of Energetic Ionic Liquids. J. Mater. Chem. A 2014, 2(22): 8153-8173.
  • [18] Thomas, E.; Vijayalakshmi, K. P.; George, B. K. Imidazolium Based Energetic Ionic Liquids for Monopropellant Applications: a Theoretical Study. RSC Adv. 2015, 5(88): 71896-71902.
  • [19] Singh, H. J.; Mukherjee, U. A Computational Approach to Design Energetic Ionic Liquids. J. Mol. Model. 2013, 19(6): 2317-2327.
  • [20] Bhosale, V. K.; Kulkarni, P. S. Hypergolic Behavior of Pyridinium Salts Containing Cyanoborohydride and Dicyanamide Anions with Oxidizer RFNA. Propellants Explos. Pyrotech. 2016, 41(6): 1013-1019.
  • [21] Nimesh, S.; Ang, H. G. 1‐(2H‐Tetrazolyl)‐1,2,4‐triazole‐5‐amine (TzTA) – A Thermally Stable Nitrogen Rich Energetic Material: Synthesis, Characterization and Thermo‐chemical Analysis. Propellants Explos. Pyrotech. 2015, 40(3): 426-432.
  • [22] Rice, B. M.; Byrd, E. F. Evaluation of Electrostatic Descriptors for Predicting Crystalline Density. J. Computation. Chem. 2013, 34(25): 2146-2151.
  • [23] Keshavarz, M. H.; Rahimi, R.; Akbarzadeh, A. R. Two Novel Correlations for Assessment of Crystal Density of Hazardous Ionic Molecular Energetic Materials Using Their Molecular Structures. Fluid Phase Equilib. 2015, 402: 1-8.
  • [24] Keshavarz, M. H.; Pouretedal, H. R.; Saberi, E. A Simple Method for Prediction of Density of Ionic Liquids through Their Molecular Structure. J. Mol. Liq. 2016,216: 732-737.
  • [25] Singh, D.; Gardas, R. L. Influence of Cation Size on the Ionicity, Fluidity, and Physiochemical Properties of 1,2,4-Triazolium Based Ionic Liquids. J. Phys. Chem. B 2016, 120(21): 4834-4842.
  • [26] Keshavarz, M. H.; Pouretedal, H. R.; Saberi, E. A New Method for Predicting Decomposition Temperature of Imidazolium‐based Energetic Ionic Liquids. Zeitschrift für Anorganische und Allgemeine Chemie 2017, 643(2): 171-179.
  • [27] Mehrkesh, A.; Karunanithi, A. T. New Quantum Chemistry-Based Descriptors for Better Prediction of Melting Point and Viscosity of Ionic Liquids. Fluid Phase Equilib. 2016, 427: 498-503.
  • [28] Gharagheizi, F.; Keshavarz, M. H.; Ilani-Kashkouli, P.; Farahani, N.; Tumba, K. A Group Contribution Method for Estimation of Glass-transition Temperature of 1,3-Dialkylimidazolium Ionic Liquids. J. Therm. Anal. Calorim. 2013, 114(3): 1363-1382.
  • [29] Palm, W. J. Introduction to MATLAB 7 for Engineers. McGraw-Hill, New York 2005; ISBN 9780072922424.
  • [30] Keshavarz, M. H.; Monjezi, K. H.; Esmailpour, K.; Zamani, M. Performance Assessment of Some Isomers of Saturated Polycyclic Hydrocarbons for Use as Jet Fuels. Propellants Explos. Pyrotech. 2015, 40(2): 309-314.
  • [31] Kamalvand, M.; Keshavarz, M. H.; Jafari, M. Prediction of the Strength of Energetic Materials Using the Condensed and Gas Phase Heats of Formation. Propellants Explos. Pyrotech. 2015, 40(4): 551-557.
  • [32] Keshavarz, M. H.; Oftadeh, M. New Method for Estimating the Heat of Formation of CHNO Explosives in Crystalline State. High Temp.-High Press. 2004, 35(4): 499.
  • [33] Keshavarz, M.; Tehrani, M. K.; Pouretedal, H.; Semnani, A. New Pathway for Quick Estimation of Gas Phase Heat of Formation of Non-aromatic Energetic Compounds. Indian J. Eng. Mater. Sci. 2006, 13(0): 542-548.
  • [34] Keshavarz, M. H.; Tehrani, M. K. A New Method for Determining Gas Phase Heat of Formation of Aromatic Energetic Compounds. Propellants Explos. Pyrotech. 2007, 32(2): 155-159.
  • [35] Keshavarz, M. H. Prediction of the Condensed Phase Heat of Formation of Energetic Compounds. J. Hazard. Mater. 2011, 190(1-3): 330-344.
  • [36] Keshavarz, M. H.; Sadeghi, H. A New Approach to Predict the Condensed Phase Heat of Formation in Acyclic and Cyclic Nitramines, Nitrate Esters and Nitroaliphatic Energetic Compounds. J. Hazard. Mater. 2009, 171(1-3): 140-146.
  • [37] Keshavarz, M. H. Predicting Condensed Pphase Heat of Formation of Nitroaromatic Compounds. J. Hazard. Mater. 2009, 169(1-3): 890-900.
  • [38] Keshavarz, M. H.; Motamedoshariati, H.; Moghayadnia, R.; Ghanbarzadeh, M.; Azarniamehraban, J. Prediction of Sensitivity of Energetic Compounds with a New Computer Code. Propellants Explos. Pyrotech. 2014, 39(1): 95-101.
  • [39] Zeman, S.; Jungová, M. Sensitivity and Performance of Energetic Materials. Propellants Explos. Pyrotech. 2016, 41(3): 426-451.
  • [40] Leach, A. R.; Gillet, V. J. An Introduction to Chemoinformatics. Springer, The Netherlands 2007; ISBN 9781402013478.
  • [41] Gramatica, P. Principles of QSAR Models Validation: Internal and External. QSAR & Combinatorial Science 2007, 26(5): 694-701.
  • [42] Gutowski, K. E.; Rogers, R. D.; Dixon, D. A. Accurate Thermochemical Properties for Energetic Materials Applications. II. Heats of Formation of Imidazolium-1,2,4-triazolium-, and Tetrazolium-based Energetic Salts from Isodesmic and Lattice Energy Calculations. J. Phys. Chem. B 2007, 111(18): 4788-4800.
  • [43] Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds. 2nd ed., Chapman and Hall Ltd., New York 1986.
  • [44] Darwich, C.; Klapötke, T. M.; Welch, J. M.; Suceska, M. Synthesis and Characterization of 3,4,5‐Triamino‐1,2,4‐triazolium 5‐Nitrotetrazolate. Propellants Explos. Pyrotech. 2007, 32(3): 235-243.
  • [45] Darwich, C.; Klapötke, T. M.; Sabaté, C. M. 1,2,4‐Triazolium‐cation‐based Energetic Salts. CHEM-EUR J. 2008, 14(19): 5756-5771.
  • [46] Xue, H.; Shreeve, J. M. Energetic Ionic Liquids from Azido Derivatives of 1,2,4-Triazole. Adv. Mater. 2005, 17(17): 2142-2146.
  • [47] Xue, H.; Twamley, B.; Shreeve, J. M. Energetic Salts of Substituted 1,2,4-Triazolium and Tetrazolium 3,5-Dinitro-1,2,4-triazolates. J. Mater. Chem. 2005, 15(34): 3459-3465.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ecddf54-035b-4c10-89b0-f1d511e030a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.