PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electronic Toll Collector Framework

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Manual toll collection systems are obsolete due to time, fuel, and pollution issues and need to be replaced by new and better alternatives. Traditionally, governments have always employed people to collect toll, but the manual labor isn’t much effective when it comes to monitoring and efficiency. We took this problem and researched out an effective solution i.e., “Electronic Toll Collector Framework” which is a framework mainly for collection and monitoring of the toll fees collected by the toll plazas in the vicinity of metropolitan cities like Lahore or Karachi. The software can generate toll tax based on vehicle type. Additionally, it can also generate daily/monthly/yearly revenue reports. The framework can serve other purposes like monitoring of vehicles (by the law enforcement agencies) and generation of analytics. It can also serve as a backbone for the government departments who are having a hard time monitoring the revenue generated by the employers. There are two operational modes of the framework (partly manual and automatic). The partly manual approach uses TensorFlow backend, and the automatic approach uses Yolov2 backend. This work will be helpful in guiding future research and practical work in this domain.
Twórcy
autor
  • Engineering in Computer Science, DIAG, Sapienza University of Rome, Rome, Italy
autor
  • Department of Computer Science, Sapienza University of Rome, Rome, Italy
  • Department of Computer Science, Sapienza University of Rome, Rome, Italy
  • Department of Artificial Intelligence, Sapienza University of Rome, Rome, Italy
Bibliografia
  • 1. Myung J., Kim D.K., Kho S.Y., Park C.H. Travel Time Prediction Using k Nearest Neighbor Method with Combined Data from Vehicle Detector Sys¬tem and Automatic Toll Collection System. Trans¬portation Research Record. 2011; 2256(1): 51–59. https://doi.org/10.3141/2256-07
  • 2. Ahmed N., Khan F.A., Ullah Z., Ahmed H., Shahzad T., Ali N. Face Recognition Compara¬tive Analysis Using Different Machine Learning Approaches. Advances in Science and Technol¬ogy Research Journal. 2021; 15(1): 265–272. DOI: 10.12913/22998624/132611.
  • 3. Huang M.C., Yen S.H. A real-time and color-based computer vision for traffic monitoring system, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763). 2004; 3: 2119–2122. DOI: 10.1109/ICME.2004.1394685.
  • 4. Redmon J., Farhadi A. 2016. YOLO9000: Better, Faster, Stronger. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, 6517–6525.
  • 5. Atif K., Yakzan E., Adnan, Maaruf A. Radio Fre¬quency Identification (RFID) Based Toll Collec¬tion System. 2011; 103–107. DOI: 10.1109/CIC¬SyN.2011.33
  • 6. Davies P., Emmott N., Ayland N. License plate rec¬ognition technology for toll violation enforcement. IEE Colloquium on Image Analysis for Transport
  • 7. Soomro, Shoaib, Javed A., Memon M., Memon A., Fahad. Vehicle Number Recognition System for automatic toll tax collection. 2012 Interna¬tional Conference on Robotics and Artificial In¬telligence, ICRAI 2012, 125–129. DOI: 10.1109/ ICRAI.2012.6413377
  • 8 Khan A.A., Yakzan A.I.E., Ali M. Radio Frequen¬cy Identification (RFID) Based Toll Collection System. Third International Conference on Com¬putational Intelligence, Communication Systems and Networks 2011, 103–107. DOI: 10.1109/CIC¬SyN.2011.33
  • 9 Ahmed S., Tan T.M., Mondol A.M., Alam Z., Naw¬al N., Uddin J. Automated toll collection system based on rfid sensor. In 2019 International Carna¬han Conference on Security Technology (ICCST) IEEE 2019, 1–3.
  • 10. Coy H., Hsieh K., Wu W., Nagarajan M. B., Young J. R., Douek M.L., Raman S.S. Deep learning and radiomics: the utility of Google TensorFlow™ In¬ception in classifying clear cell renal cell carcino¬ma and oncocytoma on multiphasic CT. Abdominal Radiology. 2019; 44(6): 2009–2020.
  • 11. Lu S., Lu Z., Zhang Y.D. Pathological brain detec¬tion based on AlexNet and transfer learning. Jour¬nal of computational science. 2019; 30: 41–47.
  • 12. Xia X., Xu C., Nan B. Inception-v3 for flower clas¬sification. In 2017 2nd International Conference on Image, Vision and Computing (ICIVC). IEEE 2017, 783–787.
  • 13. Zhang L., Zhang L., Mou X., Zhang D. FSIM: A feature similarity index for image quality assess¬ment. IEEE transactions on Image Processing. 2011; 20(8): 2378–2386.
  • 14. Torrey L., Shavlik J. Transfer learning. In Hand¬book of research on machine learning applications and trends: algorithms, methods, and techniques. IGI global 2010, 242–264.
  • 15. Luus F., Khan N., Akhalwaya I. Active learning with tensorboard projector. arXiv preprint. 2019. arXiv: 1901.00675.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ecabdf1-e5b7-4c9f-9da7-ae86601ce6d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.