PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanoblocks embedded in L-shaped nanocavity of a plasmonic sensor for best sensor performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we proposed a highly sensitive design of a plasmonic sensor which is formed by embedding a periodic array of nanoblocks in L-shaped cavity formed by the metal–insulator–metal waveguide. The nanoblocks are placed in the strong electric field confinement region to further enhance its strength by confining it to a small area. To validate the study, the spectral characteristics of the proposed sensor design is compared to the spectral characteristics of a standard design having the same geometric parameters excluding nanoblocks in the cavity. The study shows that the incorporation of 5 nanoblocks of length 25 nm in the cavity can provide best performance indicators in the form of sensitivity, figure of merit and Q-factor. The sensitivity, figure of merit and Q-factor of the proposed sensor design is 1065 nm/RIU, 251.17 and 343.4 which is significantly higher than the standard L-shape resonator design. The sensor design can be developed with a single fabrication step. Due to the ease of fabrication and the highly responsive nature of the design, it can be used in biomedical applications.
Czasopismo
Rocznik
Strony
109--120
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Samara National Research University, 443086 Samara, Russia
  • Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warszawa, Poland
  • Samara National Research University, 443086 Samara, Russia
  • Institute of RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia
Bibliografia
  • [1] BERINI P., DE LEON I., Surface plasmon–polariton amplifiers and lasers, Nature Photonics 6, 2012, pp. 16–24, DOI:10.1038/nphoton.2011.285.
  • [2] BARNES W.L., DEREUX A., EBBESEN T.W., Surface plasmon subwavelength optics, Nature 424, 2003, pp. 824–830, DOI:10.1038/nature01937.
  • [3] ZHU W., XU T., WANG H., ZHANG C., DEOTARE P.B., AGRAWAL A., LEZEC H.J., Surface plasmon polariton laser based on a metallic trench Fabry–Perot resonator, Science Advances 3(10), 2017, article e1700909, DOI:10.1126/sciadv.1700909.
  • [4] CSELYUSZKA N., SAKOTIC Z., KITIC G., CRNOJEVIC-BENGIN V., JANKOVIC N., Novel dual-band band-pass filters based on surface plasmon polariton-like propagation induced by structural dispersion of substrate integrated waveguide, Scientific Reports 8, 2018, article 8332, DOI:10.1038/s41598-018-26705-w.
  • [5] WU L., GUO J., XU H., DAI X., XIANG Y., Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes, Photonics Research 4(6), 2016, pp. 262–266, DOI:10.1364/PRJ.4.000262.
  • [6] ZHENG L., ZYWIETZ U., EVLYUKHIN A., ROTH B., OVERMEYER L., REINHARDT C., Experimental demonstration of surface plasmon polaritons reflection and transmission effects, Sensors 19(21), 2019, article 4633, DOI:10.3390/s19214633.
  • [7] BUTT M.A., KHONINA S.N., KAZANSKIY N.L., Ultra-short lossless plasmonic power splitter design based on metal–insulator–metal waveguide, Laser Physics 30(1), 2020, article 016201, DOI:10.1088/1555-6611/ab5577.
  • [8] PASSINGER S., SEIDEL A., OHRT C., REINHARDT C., STEPANOV A., KIYAN R., CHICHKOV B.N., Novel efficient design of Y-splitter for surface plasmon polariton applications, Optics Express 16(19), 2008, pp. 14369–14379, DOI:10.1364/OE.16.014369.
  • [9] TONG L., WEI H., ZHANG S., XU H., Recent advances in plasmonic sensors, Sensors 14(5), 2014, pp. 7959–7973, DOI:10.3390/s140507959.
  • [10] CHOO H., KIM M.K., STAFFARONI M., SEOK T.J., BOKOR J., CABRINI S., SCHUCK P.J., WU M.C., YABLONOVITCH E., Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper, Nature Photonics 6, 2012, pp. 838–844, DOI:10.1038/nphoton.2012.277.
  • [11] ANOUS N.H., KHALIL D.A., Performance evaluation of a metal–insulator–metal surface plasmon resonance optical gas sensor under the effect of Gaussian beams, Applied Optics 53(11), 2014, pp. 2515–2522, DOI:10.1364/AO.53.002515.
  • [12] KONG Y., WEI Q., LIU C., WANG S., Nanoscale temperature sensor based on Fano resonance in metal–insulator–metal waveguide, Optics Communications 384, 2017, pp. 85–88, DOI:10.1016/j.optcom.2016.09.041.
  • [13] WANG L., ZENG Y.-P., WANG Z.-Y., XIA X.-P., LIANG Q.-Q., A refractive index sensor based on an analogy T shaped metal–insulator–metal waveguide, Optik 172, 2018, pp. 1199–1204, DOI:10.1016/j.ijleo.2018.07.093.
  • [14] RAKHSHANI M.R., Optical refractive index sensor with two plasmonic double-square resonators for simultaneous sensing of human blood groups, Photonics and Nanostructures – Fundamentals and Applications 39, 2020, article 100768, DOI:10.1016/j.photonics.2020.100768.
  • [15] LI X., ZHANG Z., GUO F., HUANG Y., ZHANG B., ZHANG L., YANG Q., TAN Y., LIU X., BAI H., SONG Y., Tunable plasmonically induced reflection in HRR-coupled MIM waveguide structure, Optik 199, 2019, article 163353, DOI:10.1016/j.ijleo.2019.163353.
  • [16] YAN S., ZHANG M., ZHAO X., ZHANG Y., WANG J., JIN W., Refractive index sensor based on a metal–insulator–metal waveguide coupled with a symmetric structure, Sensors 17(12), 2017, article 2879, DOI:10.3390/s17122879.
  • [17] KAZANSKIY N.L., KHONINA S.N., BUTT M.A., Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: a brief review, Physica E 117, 2020, article 113798, DOI:10.1016/j.physe.2019.113798.
  • [18] BUTT M.A., KHONINA S.N., KAZANSKIY N.L., A multichannel metallic dual nano-wall square split-ring resonator: design analysis and applications, Laser Physics Letters 16(12), 2019, article 126201, DOI:10.1088/1612-202X/ab5574.
  • [19] BUTT M.A., KAZANSKIY N.L., KHONINA S.N., Label-free detection of ambient refractive index based on plasmonic Bragg gratings embedded resonator cavity sensor, Journal of Modern Optics 66(19), 2019, pp. 1920–1925, DOI:10.1080/09500340.2019.1683633.
  • [20] BUTT M.A., KHONINA S.N., KAZANSKIY N.L., An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range, Optik 202, 2020, article 163655, DOI:10.1016/j.ijleo.2019.163655.
  • [21] BUTT M.A., KHONINA S.N., KAZANSKIY N.L., Metal-insulator-metal nano square ring resonator for gas sensing applications, Waves in Random and Complex Media 31(1), 2021, pp. 146–156, DOI:10.1080/17455030.2019.1568609.
  • [22] GAI H., WANG J., TIAN Q., Modified Debye model parameters of metals applicable for broadband calculations, Applied Optics 46(12), 2007, pp. 2229–2233, DOI:10.1364/AO.46.002229.
  • [23] NAGHIZADEH S., KOCABAS S.E., Guidelines for designing 2D and 3D plasmonic stub resonators, Journal of the Optical Society of America B 34(1), 2017, pp. 207–217, DOI:10.1364/JOSAB.34.000207.
  • [24] YIN J., TIAN J., YANG R., Investigation of the transmission properties of a plasmonic MIM waveguide coupled with two ring resonators, Materials Research Express 6(3), 2019, article 035018, DOI:10.1088/2053-1591/aaf483.
  • [25] ZHANG Z., LUO L., XUE C., ZHANG W., YAN S., Fano resonance based on metal-insulator-metal wave-guide coupled double rectangular cavities for plasmonic nanosensors, Sensors 16(5), 2016, article 642, DOI:10.3390/s16050642.
  • [26] ZAFAR R., SALIM M., Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor, IEEE Sensors Journal 15(11), 2015, pp. 6313–6317, DOI:10.1109/JSEN.2015.2455534.
  • [27] JANKOVIC N., CSELYUSZKA N., Multiple Fano-like MIM plasmonic structure based on triangular resonator for refractive index sensing, Sensors 18(1), 2018, article 287, DOI:10.3390/s18010287.
  • [28] SHI Y., ZHANG G.-M., AN H.-L., HU N., GU M.-Q., Controllable Fano resonance based on coupled square split-ring resonance cavity, Guangzi Xuebao/Acta Photonica Sinica 46(4), 2017, article 0413002.
  • [29] SANTIS C.T., STEGER S.T., VILENCHIK Y., VASILYEV A., YARIV A., High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms, Proceedings of the National Academy of Sciences of the United States of America, PNAS 111(8), 2014, pp. 2879–2884, DOI:10.1073/pnas.1400184111.
  • [30] KARIMZADEH-JAZI R., HONARVAR M.A., KHAJEH-KHALILI F., High Q-factor narrow-band bandpass filter using cylindrical dielectric resonators for X-Band applications, Progress In Electromagnetics Research (PIER) Letters 77, 2018, pp. 65–71, DOI:10.2528/PIERL18041007.
  • [31] BORJA A.L., BELENGUER A., ESTEBAN H., BORIA V.E., Design and performance of a high-Q narrow bandwidth bandpass filter in empty substrate integrated coaxial line at Ku-band, IEEE Microwave and Wireless Components Letters 27(11), 2017, pp. 977–979, DOI:10.1109/LMWC.2017.2750118.
  • [32] UESUGI T., SONG B.-S., ASANO T., NODA S., Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab, Optics Express 14(1), 2006, pp. 377–386, DOI:10.1364/OPEX.14.000377.
  • [33] CHROSTOWSKI L., GRIST S., FLUECKIGER J., SHI W., WANG X., OUELLET E., YUN H., WEBB M., NIE B., LIANG Z., CHEUNG K.C., SCHMIDT S.A., RATNER D.M., JAEGER N.A.F., Silicon photonic resonator sensors and devices, Proceedings of SPIE 8236, 2012, article 823620, DOI:10.1117/12.916860.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ec547a1-1625-4abd-967d-6b7e5e3597b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.