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NEW OSCILLATION CONDITIONS
FOR FIRST-ORDER
LINEAR RETARDED DIFFERENCE EQUATIONS
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Emad R. Attia, Bassant M. El-Matary, and George E. Chatzarakis

Communicated by Josef Diblik

Abstract. In this paper, we study the oscillatory behavior of the solutions of
a first-order difference equation with non-monotone retarded argument and nonnegative
coefficients, based on an iterative procedure. We establish some oscillation criteria,
involving lim sup, which achieve a marked improvement on several known conditions
in the literature. Two examples, numerically solved in MAPLE software, are also given
to illustrate the applicability and strength of the obtained conditions.
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1. INTRODUCTION
Consider the difference equation
Az(m) 4+ b(m)z(n(m)) =0, m € Ny, (1.1)

where Az(m) = z(m + 1) — z(m), Ny is the set of all nonnegative integers and
the sequences (b(m))m>0, (1(Mm))m>0 are nonnegative real numbers and integers,
respectively with

nim) <m—1 forall meNy and nlgnoo n(m) = oco.

A sequence of real numbers (z(m)).,>—, which satisfies Eq. (1.1) for all m > 0,
is called a solution of Eq. (1.1) where ¢ = —ming>o7(s). As customary, a solution
((m))m>—, of Eq. (1.1) is called oscillatory, if the terms of the sequence (x(m))m>_,
are neither eventually positive nor eventually negative; otherwise it is called nonoscil-
latory. Equation (1.1) is called oscillatory if all its solutions are oscillatory.
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Throughout this paper, we assume that the exists a nondecreasing sequence
(7(m))m>m, such that n(m) < y(m) < m —1 for m > my, my € Ng. We are going to
use the following notation:

m—1 m—1
R TIN . 1
a* = 171711rl>1(£10f Z b(s), a= l:nrri)lglof Z b(s), a< o
s=(m) s=n(m)
B(m) = max 1(s), (1.2)
0, if d>1,
w(d):==01—-d—1-2d— d?
5 , if delo, 1],

and . .
Z A(s) =0 and H A(s) = 1.

Also, let A(5¢) be the smaller positive root of A = e*?.

In recent few decades, a great effort has been performed to investigate the oscillatory
behaviour of difference equations with deviating arguments, see [1, 3, 5-14, 16-25].
For example, the oscillation problem for the autonomous retarded difference equation

Az(m) +bijxz(m —¢) =0, m € Ny, (1.3)

where b; is a nonnegative real number and ¢ is a positive integer, has been completely
solved by Ladas et al [20]. Indeed, Eq. (1.3) is oscillatory if and only if

¢S
while the results for the non-autonomous form of (1.3), i.e.,
Axz(m) +b(m)x(m —¢) =0, m € Ny, (1.4)

are incomplete. Many sufficient oscillatory criteria have been obtained for this equation.
For example, Erbe and Zhang [18] proved that, if

- <
or m
limsup Y b(s) > 1, (1.6)

m—oo =
s=m—g¢

then all solutions of Eq. (1.4) are oscillatory, while Ladas et al. [20] improved (1.5) to

m—1
o 1 Z c*

il 1+¢
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Chatzarakis et al. [13,14] showed that all solutions of Eq. (1.1) with nondecreasing
retarded argument are oscillatory, if

lim sup i b(s) > 1, (1.7)

m—roo
s=n(m)

or
m—1

o 1
IL?L?O{ Z b(s) > >
s=n(m)
In the following we highlight some recent lim sup criteria for Eq. (1.1).

Chatzarakis et al. [15] improved (1.7) to

- 1
limsup ) b(s)=1—§(1—a—\/1—2a), a>0. (1.8)
=6(

m—00
m)

Braverman and Karpuz [5] and Stavroulakis [24] established the sufficient conditions

m O(m)—1 1
1imsup< Z b(s) H 1—b(81)> >1 (1.9)

T Ns=0(m)  s1=n(s)
d
lim sup ( > ovs) ] 1—b(31)> >1-w(a), a>0, (1.10)
s=0(m)  s1=n(s)

respectively.
Braverman et al. [6] defined the sequence {¢;11(k,v)};>0 recursively as follows:

brm) = [[ (- b)), dr(mo) = [[ (1 -b)ér (snls))  (L11)

and showed that Eq. (1.1) is oscillatory if

lim sup ( Z b(s)p, ! (G(m),n(s))) >1 (1.12)
m—00 s=0(m)

lim sup ( Z b(s)p, ! (H(m)m(s))) >1—-w(a), a>0, (1.13)
m—oo s=0(m)
for some [ € N.

Very recently Chatzarakis et al. [3,7-12,17] established many iterative oscillation
tests for Eq. (1.1). For example, Chatzarakis and Jadlovska [10], and Attia and
Chatzarakis [3] established the conditions (1.14) and (1.15), respectively

m o(m)—1 . s1—1 1
lim sup Z b(s)ezslzn(s> CEON § N = 1oy >1 (1.14)

m—00 s=0(m)
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for some [ € N, where

Ti(m) = 1+ Z b(s)ets1= —o LCR0 I IS 1T1i1<32>],
with
m—1
T ( ) 1+ Z )\(a s1=n(s) b(81)‘| , a>0,
s=n(m)
and
. Ui (m) 1
lim sup ] + Z b(s) H > 1
m—0o0 Zg(%—:l) (3) s=60(m) s1=n(s) 1= b(81)q}l(517n(81))
(1.15)
for some [ € N, where
¢(m+1)—1 m 6(m)—1 1
dim) = b(s) Y bs)) ] :
s=m+1 s1=n(s) s2=mn(s1) 1= b(82)\Pl(82’ 77(82))
k—1 b(S)
\I/l(K:? U) =1+ Z L r—n(s)’
= ( =T DONERLICN ) S . 1<s2,n<s2)))
Uo(k,v) =1, k> v
and
¢(m) =min{i € Ny : i > m,n(i) >m — 1}. (1.16)
Very recently Attia and El-Matary [4] established the conditions
y(m)—1 1
lim su b(j — | >1 1.17
maw @m0+ 3 0 T1 =550 ()
J=v(m) J1=n(j)
for some I € N, where Up(m) =1,
LR
Uy(m) = m) LODBG) fop = 1,2,
l(m) 1 — ‘/l( ) or 3 4y ’
¢(m41)— . m . v(j1)—1 1
Q(m,l) = Eitna b0) Zjl =n(j) b(ﬁ) Ja lnul) 1=b(j2)U(j2)

m+1 .
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and
-1 k y(m)—1
W(m): Hl Vi 1 (~9— 1 Z bjl Z b(]k)
R G ) iSim szt
F*Hm)—1 l 1 m—1
DORCARS | s P eTET e ST bGi)
Je=n(jk—1) Jj=2 ji=v(m)
v(m)-1 AT m)—1 ' (m)—1 1
b(ja) - .. b(j , ,
j2§(jl) v jz—%l) (jl)jl+11;7[7(jl) L= 00t1)Ui-1 (i)

forl=1,2,..., and
(zz% b(s) X7 e Ds1)r (v (s1),m(51))
ZZ%TB " ()

t Z b(8)¢f1(7(m),77(8))> >1,

s=y(m)

lim sup
m—00

(1.18)

where [ € N and ¢,,(%,v) and «(m) are defined respectively by (1.11) and (1.16).

In this paper we establish many oscillation results for Eq. (1.1), which may be con-
sidered as analogues of some results of the delay differential equations that can be
found in [2]. The improvement of some of our results is shown, especially for Eq. (1.4).
Finally, we discuss the applicability and effectiveness of some of the obtained results
using two numerical examples.

2. MAIN RESULTS
In the following, we first introduce three important properties for a positive solution

x(m) of Eq. (1.1), which have a fundamental role in establishing our main results.
According to [16, Lemma 2.1] and [8, Lemma 3], we have respectively that

it ooy = (@) 21
and
lim inf (0(m)) > Aa), a>0. (2.2)

m—oo  x(m)

The third property is introduced in the following lemma. For this purpose,
the sequences {A;(m)};>0 and {Y;(k,v)}i>1, £ > v are defined by

Ay(m) = ((m) n(m)) C1=1,2,..
D i 7( ) b(8) Ly (v(m),m(s))

)
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where
1 a=20
A =p=<" ’ 2.3
o(m) = p {A(@, " (2.3)
for m > ng, ng € Ny and
Kk—1 1
Yo) =] ——— 1=12,...
1, v) 1;[ 1= b(s)Ar_1(s)
Lemma 2.1. Assume that | € No. Then, b(m)Aj(m) <1 and
z(n(m)) > Aj(m)  for all sufficiently large m, (2.4)
z(m)
where
1 a=0
A€ — — ’ ’ 2.5
o(m) = p(e) {)\(a) —e, e (0,Ma), a>0 (2:5)

€ € rk—1
and Af(m) = Ay(m), T5(k,v) =[]._, m forli=1,2,...

Proof. In view of the nonincreasing nature of 2(m) and (2.2), it follows for sufficiently
small € > 0 that

z(n(m)) > A§j(m) for all sufficiently large m. (2.6)

Dividing Eq. (1.1) by z(m), and then taking the product, from u to v — 1, v > u,
we get

(0) _Tr et T (1L e B0
o< T = I (0. >0
that is,
z(u) = z(v) SEIu W for all v > u. (2.8)
Summing up Eq. (1.1) from u; to v; — 1, we get
x(v1) — x(uy) + Z_ b(s)x(n(s)) =0 for all v1 > ;. (2.9)

Therefore,

w(m) — 2l m) + 3 b(s)r(n(s) = 0.

s=y(m)
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Using (2.8) and 7n(s) < v(s) < ~v(m) for v(m) < s < m — 1, the last equation takes
the form

y(m)—1 1

wlm) ~atatm) +20em) 3 o) [ 1y =0

s=vy(m) s1=n(s) z(s1)

which, in turn, gives

x('y(m)) B - m—1 y(m)—-1 1
x(m) =\t QZ b(s) H l_b(sl)fl’(n(sl))

=~(m) s1=n(s) z(s1)

>0,

which yields by (2.6) and (2.8) that
£(n(m)) _ x(n(m)) 2(+(m)) _ H“@JTwiﬁs
x(m) z(y(m)) x(m) — 1y ) b(s )HZI"”Z(S W
_ <<><>> T
L= 7 b)Y (v(m),n(s)) o

Continuing in this manner, we get

£(n(m) _ T{ (y(m), n(m)) oy
x(m) = 1= ()Y ((m)n(s)

From this and (2.7), we obtain

The proof is complete. O

Theorem 2.2. If for some | € Ny one of the following conditions is satisfied:
(i)
b(vs)Aj(vs) > 1 for all s € Ny,
where {Vs}s>o0 s an unbounded sequence of positive integers,
(i)

limsup D b(s)Tupa (v(m), n(s)) > 1 — w(a®), (2.10)

m— 00
s=vy(m)

then Eq. (1.1) is oscillatory.
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Proof. If not, there is no loss of generality to assume that there exists an eventually
positive solution x(m) of Eq. (1.1). Then according to Lemma 2.1, the proof of (i) is
immediate. To complete the proof, we assume that (ii) is valid. In view of (2.9) from
the proof of Lemma 2.1, we get

m

z(m+1) = z(y(m))+ Y b(s)z(n(s)) = 0. (2.11)

s=y(m)

Since n(s) < y(m) for s < m. Using (2.4) and (2.8), we have

y(m)—1
z(n(s)) = z(y(m)) H m = z(y(m)) iy (v(m),n(s)) -
s1=n(s) it

Substituting into (2.11), we obtain

w(m+1) —z(y(m)) +2(y(m)) Y b(s) T (v(m),n(s)) <0, (2.12)
s=v(m)
that is,
S c _z(m+1)
S_‘yz(m) b(S) +1 (V(m)ﬂ?(s)) < x(’y(m)) .
Consequently,
imsu - s)Yy m s — limin M

Using (2.1) when a* > 0 and the fact that ;Eﬁ;l)g > 0 when ¢* = 0 imply that

lim sup Z b(s)Yip1 (v(m),n(s)) <1 —w(a").

m—00
s=vy(m)

By letting € — 0 the last inequality leads to

limsup Y b(s)Tur1 (v(m), n(s)) < 1 - w(a”).

m— 00
s=~y(m)

This contradicts (2.10). O
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Theorem 2.3. Letl € Ny and {v;}i>0 be an unbounded sequence of positive integers.
If one of the following conditions holds:

(1)
y(vi)—1
Z b(s)Yi 1 (v(v),n(s)) > 1 forallic Ny and all v(v;) < vi <y, (2.13)
s=y(v})
where Y§(k,v) is defined as in Lemma (2.1),
(i)
lim sup Z bs)Ti1 ((5), () >1—w(a"), (2.14)
m—r oo

m)—1
s=v(m) 1- 221(:3/(3) b(sl)Tl+l (7(8)7 77(81))
then Eq. (1.1) is oscillatory.

Proof. As before, let z(m) > 0 eventually for all sufficiently large m. Therefore,
(2.9) implies that

z(m+1) —z(y(m))+ Y b(s)x(n(s)) = 0. (2.15)

Since 7(s) < 7y(s), then (2.4) and (2.8) imply that

v(s)—1
z(n(s) = z(v(s)) H m = z(y(s)) Yy (v(s),m(s)) -
s1=n(s)
Substituting into (2.15), it follows that
2(m+1) - £ Y M) T ((s)n(s) <0 (216)
s=y(m)
Again, (2.9) for m > s leads to
y(m)—1
z(y(m) —z(v(s)) + Y bls)a(n(s1)) =0. (2.17)

s1="7(s)

Using the fact that v(s) > n(s1) for s > v(m), y(m) — 1 > s1, then (2.4) and (2.8),

imply that
z(n(s1)) = 2(7(8))Tisq (v(s),m(s1)) -
From this and (2.17), we have

v(m

z(y(m)) — 2(v(s)) Z b(s1)Tiy1 (v(s),n(s1)) <0,

s1=7(s)
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or
0 < 20lm) 1—7% b(s1)T%,, (7(s), n(s1)) (2.18)
l‘(’Y(S) s1=7(s) l+1 ’
which leads to
v(m)—1 -1
z(y(s)) = z(y(m)) (1 -y b(Sl)TzEH(’Y(S),n(SO)) -
s1=7(s)

Substituting into (2.16), we have

S b(s)Tiv1 (v(s),1(s))
z(m+1) —z(y(m)) + z(y(m)) - <0.
! ! s=§(:m) 1= ZI(ZA)Y(S) b(s1) Y7, (v(s),n(s1))
Consequently,
- b(s)Yiy1 (v(8),m(s)) cq_ Hm+1)
s_g(: 1- Zzl(my (s) b(s1)Ti, (v(s),m(s1)) (v(m))
Therefore,
)Y (v(s):n(s))
lim su bl <1-—w(a").
o %:m) zzf’”i b(s1) i1 (1(s).0(s0))
Letting € — 0 in the above inequality, we obtain
lim sup Z (5)T111 (7(5), n(5)) <1-—w(a").

m—r oo

smromy L ng"i b(s1)Yis1 (v(s),n(s1))

This contradicts (2.14), so the proof of (ii) is complete.
By (2.18),

Z b(s1)Y5r (Y(s),m(s1)) <1, ~y(m)<s<m

s1=7(s)

for all sufficiently large m, this contradicts (2.13) and completes the proof of (i). O
Theorem 2.4. If for somel € Ny,

CmA1)=1 oy §m b(s1)Y1(v(m),n(s i
<Zs m+1 )251 =n(s) (51) L1 (7(m), m( 1))+ Z b(s)Y 141 ('y(m),n(S))> - b

¢(m+1)—1
Zs( m+1) (S) s:'y(m)

where ((m) is defined by (1.16), then Eq. (1.1) is oscillatory.

(2.19)
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Proof. As before, assume that xz(m) > 0 for all sufficiently large m. From (2.12),
we get
z(m+1)

W + Z b(s)Yi4q1 (v(m),n(s)) < 1. (2.20)

s=7y(m)
Using (2.9) and the fact that ((m + 1) > m + 1, we get
¢(m+1)-1

z(C(m+1)) —z(m+1)+ Y b(s)z(n(s)) =0. (2.21)

s=m-+1

Again (2.9) and the fact that m > n(s) for {(m+ 1) — 1 > s, lead to

w(m+1) —a(n(s)) + Y bs1)z(n(s1)) =0.

s1=n(s)
Substituting into (2.21), we obtain
¢(m+1)—1
z(((m+1))—z(m+1)+z(m+1) Z b(s)
s=m-+1
m+1 m
+ Y b (s) D bs)a(n(s1)) =0.
s=m+1 s1=n(s)
Therefore,
¢(m+1)—1
z(((m+1)—z(m+1)+z(m+1) Z b(s)
s=m-+1
C(m"'—l) 1 )
+a(y(m) Y Z b(s ( 5 =0
s=mt1 s1=n(s)

The positivity of z(¢(m + 1)) leads to
m+1 m x S
x(m-i— 1) Zf m+1 (5) 251 =n(s) b(sl)%
2y (m)) — selmA =1 g gy

s=m+1

> 0. (2.22)

Since n(s1) < y(m) for s; < m, using (2.8) we obtain

2(m+1) yelmt = (s)ZZ ey B TS (), (1)
w(v(m)) ZC(m+1) 1 (S) .

s=m+1

From this and (2.20), we get

yoglme ) <s> ST D)L (v (m),
ZC(mﬂ b(s)

s=m-+1

D) S )Tt (o), nls) < 1

s=y(m)
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It follows that

(zé“:;:ﬂ’ "b(s) e D(s1) TS (v (m) 1(s1))
1=yt b(s)

lim sup
m—00

+ Z b(s)Yipy (v(m),n(s)) | < 1.

s=vy(m)

As € goes to zero, the above inequality gives

lim sup
m— 00

(ZS”:#E b(s) S gy b(s1) Y (y(m), n(s1))

¢(m+1)
Zs n:n-‘,-l (5)

This contradicts with (2.19) and completes the proof. O
Corollary 2.5. Let

m—1 m—¢—1
af:l}r{rggof Z b(s) Z b(s1).
s=m—¢ $1=8—¢

Equation (1.4) is oscillatory, if

>;<

(2.23)

lim sup Z b(s >1— .
m—0o0 s=m—g l—a

Proof. Since, n(m) = m — ¢ for Eq. (1.4), one can choose v(m) = m — ¢, it follows
that {(m) = m + <. Let

¢(m+1)—-1 m
T M) L s Tim ),
B(m) = —= e + 3 BT (r(m).n(s)) -
- Y bs) s=7(m)
s=m+1

Then Zm+§ b(s )Z .
B(m) 2 iian m gglig > 81 + b
L= Y b(s) SZ<

Therefore,
Bm)> Y b(s)+ 12—
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for sufficiently small € > 0 and all sufficiently large m. Consequently,

limsup B(m) > lim sup Z b(s) + AT E

m— oo m—oo - l—a—ce¢
s=m—g

As € goes to zero, we get

m—r oo m—r oo

limsup B(m) > limsup Z b(s T

S -<

it follows from (2.23) that limsup,,_, ., B(m) > 1. A direct application of Theorem 2.4
completes the proof. O

Next, we define the sequence {¢,(k,v)};>0 as follows:

Bul) = [[ (1= pb(s). Fraaleo) = [] (1-06)3 " (snls))

where p is defined by (2.3).

Theorem 2.6. If for some ni,ny € N,

1

S b(s) Yo IELC >$1 (v(m),n(s1))

lim sup
“ —1
+ Y b(8)dn, (v(m)m(s) | > 1, (2.24)
s=vy(m)

where ((m) is defined by (1.16), then Eq. (1.1) is oscillatory.
Proof. From (2.15), we have

L @9

From (2.8), the nonincreasing nature of z(m) and (2.2), we have

(0 2200 [] iy = (09 (2.26)

for all v > wu, sufficiently large u and sufficiently small €, where p(e) is defined by (2.5).
Substituting form (2.26) into (2.8), we obtain

v—1
1 __
x(u) > z(v) H = ¢y ! (v,u,e) forall v > wu.

o 1=y (s,m(s),€) b(s)
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By repeating this argument n times, we obtain

v—1

z(u) > z(v) H L = 8;1 (v,u,€e) forall v > wu. (2.27)

-1

s=u 1 — an—l (Sa 77(5)7 6) b(S)

Since y(m) > n(s) for m > s, then we have

L) Gt (lm)m(s), ), > s (225)

%

From (2.22) and (2.27), we obtain

rm+1) ST b(s) STy b(s1) B, (v(m), m(s1), €)
s(m) 1— Sl '

s=m+1

(2.29)

Substituting from (2.28) and (2.29) into (2.25), we get

C("’H‘l)—l m 1
e £ sed b,
s=m s1=n(s 1
. £ b8, (m)n(s).0) < L
T S st

s=m-+1

Therefore,

lim sup Zg(";“ill b(s) ZZ =n(s) b(31>$71(7(m)7 n(s1),€)

m—o0 = sl p(s)

+ D b(3)$;21 (v(m),n(s),e) | <1.

s=7y(m)
As € goes to zero, we have

1

Soglmer <s> ST bs1) b, (Y(m),1(s1))

lim sup
Mmoo 1 m =1 p(s)
i —1
+ > b(8)d,, (v(m),n(s) | <1,
s=y(m)

which contradicts (2.24). O
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Remark 2.7.

(1) Condition (2.24) improves and generalizes conditions (1.9), (1.12) and (1.18).
(2) Condition (2.23) improves condition (1.6) when af # 0.

(3) If b(m) > B for all m > mg, mg € Ny and a = ¢, then condition (2.23) becomes

m 2
hgljllop Z b(s) >1— (261(14-045)).

s=m—g

(2.30)

It is easy to show that condition (2.30) improves condition (1.8).

The following examples demonstrate the effectiveness and efficiency of some of our
results over all the mentioned results. All calculations are made by using a code of
Maple program.

Example 2.8. Counsider the first-order difference equation
Az(m)+b(m)x(n(m)) =0, n>2, (2.31)

where

B, ifme{2m, +3, 2m, +2,...,2m, — 8},
b(m) = .
0, otherwise,

where 8 > ¢ > 0 and {m, },>0 is a sequence of positive integers such that my > 4,
myps1 > m, + 7 for all » € Nyg, lim m, = oo, and
T—>00

m—1 if m=2r
m) = ’ ’ r € Np.
n(m) {m—?), ifm=2r+1, 0

By (1.2) and (1.16), it is obvious that

m—1, if m=2r

O(m) = ) r € Ny
m—2, ifm=2r+1,

and

2 if m=2
Cmy=amTE T e,
m+1, ifm=2r+1,

(see Figure 1).
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a) b) c)
comyh
8 L]
I
7 I
U(m)“ /// H(m)A /,/ 6 e e /|//
A
5 e 5 7 5 1 a7
4 5 | 4 e 4 oo )1 I
i /, | 4 & ¥ : : ] ’}/I 1
| | o
2 S el 2 S % e Y111
//, | I | . //, . | I | i ://I | | 1 |
1 o o [
T - S T Uy gy my A my
T2 7 4 5 6 = ™ 3 4 5 6 = 2 3 4 5 6 =
-1¢ ! T ) -1
2 . -2 .

Fig. 1. The graphs of the sequences: a) n(m), b) (m), and ¢) ¢(m)

Let us assume that v(m) = 6(m). Since

Z b(s) > Z b(s) > 9 for all m € Ny,

and
2m.,+5 2m.,+5
Z b(s) = Z b(s) =0 for all r € Ny,
s=n(2m,.+6) s=2m,+5

then a = lim inf Z:\n:;l(m) b(s) = 6. Next, we study the cases § =0 and § = 2.
m— 00 N

Assume that 6 = 0, then p = 1 (that is defined by (2.3)), and hence conditions
(1.8), (1.10), (1.13) and (1.14) can not be applied. Let

m O(m)—1
1
D(m) = Z b(s) H —-
1 b(Sl)
s=0(m) s1=1(s)
Then
3—p3+4pB2 -5
D(2m, +1) = pB-p 63 P) < 0.9999, r €Ny,
(1-5)
for all 5 € [0, 0.225], it follows that limsup D(m) = lim D(2m,+1) < 1, so condition
m—oo 700

(1.9) is not satisfied. Also, for 8 = 0.1621, we have

2m,+1
lim > b(s)yt (02me +1),n(s)) | <0.9<1,

r—00
s=0(2m,+1)
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and
m 6(m)—1
. U (m) 1
lim sup + b(s)
e e L, ML et
m, 0(2mp+1)—1

. 9y(2m, + 1) = 1
= lim + Z b(s) H

o 2m,+2)—1 —

- Zg( Qm::_Q b( ) s=0(2m,+1) s1=n(s) 1 b(SI)\Ijl(Slyn(Sl))
< 0.996,

therefore, conditions (1.12) with [ =4 and (1.15) [ = 1 are not satisfied.
However, as we will show, our condition (2.24) is enough to guarantee the oscillation
of Eq. (2.31) for all 5 € [0.1621, 0.19]. Let

Sl (s) S0 b(s1)85  (v(m), n(s1)

P = -2 bl
+ 0 bs)ds (v(m),n(s))
s=vy(m)
Then
¢(2my+2)—1 b 2m,+1 -1
Di(2my +1) = Zs:QmT+2 (s) Zsl Z(;m (le))(blg (v(2m, 4+ 1),n(s1))
Zs 2m,+2 b(S)
2m,+1 .
+ Y b(s)bs (v(2me+1),m(s)).
s=y(2m,+1)
Using Maple software, we get
Al (57 1) ﬁ
V) = 08 T U A ()P (- A (5.1) A (3.1)
B
T A G

where

—1

-1
B
A =32(1-8[l1 - —=
1(B.p) = ﬂ( (BpH)g)
-1

-1
B

+ +p(1-pl1-—2— :

BB+8 ﬁ( (_5p+1)3>
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-1

B

(1-%) (1- o)

-2
As(B,p) = (1 - 1_5{3) :
(1-8p)°

Consequently, Dy (2m, +1) > 1.0014 for all 5 € [0.1621, 0.19] and all > 0. Therefore,

A2(/85p): 1-

and

lim Di(2m, +1)>1 forall B € [0.1621,0.19],

T—00

which, in view of condition (2.24) with n; = 3 and ny = 4, means that Eq. (2.31) is
oscillatory for all g € [0.1621, 0.19].

Now, we consider the case that § = é, sop=-eanda= % Therefore,
A 1
Di(2m, + 1) = 1) | — i - —+8
=28) " (1-54>(5,3))" (1= 542 (8, 7) 45 (5,2))
B

+ >1 for 8 €10.1367, 0.142].

1-5A45(8,¢)

Then condition (2.24) with ny = 3 and ny = 4 is satisfied, and hence Eq. (2.31) is
oscillatory for all 8 € [0.1367, 0.142]. Observe, however, that

i 1) s b(s) S bs1)6r (1(2me £ 1), m(51)
(2my +1) = ¢@mr+2)—1
1- Zs:Qm,,,+2 b(S)
2m,+1

+ Y bs)ert (v(2me +1),n(s))

s=vy(2m,+1)

8 (201 B42(8,1) 7 +1)
- 1-28

. 3
(1- 845 (8,1))° (1 - B A2 (B,1) A3 (8, 1))

B
A ) <1 for B €0, 0.16]

+ B+
and

m 6(m)—1 s1—1 1
. b T
lim sup E b(S)ezslzn(S) (SI)H82:71(S1) 1-7T;(s2)

m—o0 s=0(m)
2m,+1 0(2mp+1)—1 s1—1
) r b(s 1 1
—aim Y p(seamne O laen TR <0058
T—>00

s=0(2m,+1)
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for 8 € [0, 0.1525]. Therefore, conditions (1.14) with [ = 1 and (1.18) with | = 4
cannot be applied for 5 € [0, 0.1525] and S € [0, 0.16], respectively.

Example 2.9. Consider the first-order difference equation
Az(m) +b(m)x(n(m)) =0, m > 2, (2.32)

where

0.15, ifm e {3m,+2, 3m, +1,...,3m, — 17},
b(m) = .
0, otherwise,

where {m, },>¢ is a sequence of positive integers such that mg > 10, m,41 > m, + 10
for all r € Ny, lim m, = oo, and
r—00

m—1, if m=3r,
nim)=qm-3, ifm=3r+1, reNp.
m—1, ifm=3r+2,

In view of (1.2) and (1.16), it follows that

m—1, if m=3r
Om)=<m—2, ifm=3r+1, reNy,
m—1, ifm=23r+2,
and
m+2, if m=3r
(m)=<m+1, ifm=3r+1, reN
m+1, ifm=3r+2,
(see Figure 2).

a) b) c)
n(m)u o(m)A {("”;)A
. //' I’
/// // ! 1\
/ ’ 6 ¢ A
) e /1
5 7 | 5 /s ] 1,70
S S > LI B
4 s T : 4 / I. : 4 | I/ : |
/ / ! /)r | !
, | | Py | | 1,71 I
3 , [ 3 ; [ 3 [
’ Il s [ 0 B R
s Lol e (. 1 I B
(P A T Y I A S B S I % SR R
I
1,7 ¢ 19 1 N B Jd 0
| l | I ,m 4 | ! ! | ,mo /: I : : | :m
T N T > »
14 1: 2 3 4 5 6 6% 2 3 4 5 6 111 2 3 4 5 6
20 & 2 5

Fig. 2. The graphs of the sequences: a) n(m), b) 8(m), and ¢) {(m)
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In the following we consider that y(m) = 6(m). Clearly,

m—1
Z b(s) >0 forallme Ny
s=n(m)
and
3m,+4 3m,+4
Z b(s) = Z b(s) =0 for all r € Ng,
s=n(3m,+5) s=3m,+4

then a = liminf > 7" n(m) b(s) = 0, and so conditions (1.8), (1.10), (1.13) and (1.14)

m—r o0

fail to apply. Let

Cm+11) Lpi) 5o b(s1)Y1(v(m),n(s -
Digmmii O )qul(i)l (51 )5)1(7( ) n(s1)) + Z b(s) Y2 (y(m),n(s)) .
a—mai s=v(m)

Using Maple code, we obtain

F(m) =

limsup F'(m) = lim F(3m, + 1) > 1.02.

m— oo T—00

Consequently, condition (2.19) with [ = 1 is satisfied and hence Eq. (2.32) is oscillatory.
Observe that

O(m)—1
hmsup( Z 0.15 H 1015)

s=60(m) s1=n(s)
3m,+1 0(3m,+1)—1 1
= 1i 1 —_— 671
5, < 2 o ] 10.15><067 >
s=0(3m,r+1) s1=n(s)

191(
< ZC(m-I-l) 1y Jr Z 0.15 H 1—015‘1’ 81, (81))>

s=m+1 . m) s1=n(s)

3m,+1 0(3m,+1)—1
13821015 ' 1—0.15%(s1,7(s1))

s=3m,+2 s=0(3m,+1) s1=n(s)

< 0.764,

v(m)-1
1 0.15
im sup ( Z H 1-0. 15U2 j1)>

m—00
j=~(m) J1=n(j)

3m,+1 y(3m,+1)—1 1

= lim <Q(3mr+1,2)+ oo ] 1—0~15U2(jl)> < 0.99

J=y(Bmy+1) Ji=n(j)
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and

lim sup
m—0o0

m—+1)—1 m _
( Wt 071053 ) 0.1565  (v(s1), m(s1))

m—+1)—1
S SHERETNE

+ 3 01507 (V(M)m(S))>

s=7y(m)

o [(ZERERT 0I5 01501 (1(51) m(s1)
=00 1- Y282 015
3m,+1
+ ) 0.15¢21(7(3mr+1),n(s))> < 0.99.
s=v(3m,+1)

Therefore, none of the conditions (1.9), (1.15) with [ = 1, (1.17) with [ = 2, and (1.18)
and (1.12) with [ = 4 can be applied to this equation.

3. CONCLUSION

In this paper, we investigated the oscillation problem of the retarded difference
equation (1.1). Using the ideas of [2], many new oscillation criteria were established.
We showed the improvement of our results over previous works, especially for (1.4).
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