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Abstract  
 

This paper presents a probabilistic model of hazard-related interdependence between the operations carried out 

in the ports of the Baltic Sea region and in their neighborhoods. Each single operation, considered w.r.t. its 

hazardous aspect, will be defined as a point process consisting of undesired events (emergencies and/or 

accidents). Thus, the interdependence between these processes can be regarded as interaction between such 

events. The developed model will specify the impact of hazard related events occurring within one process on 

the risk of occurrence of such events in the other processes. This model will be a basis for the analysis of inter-

process dependencies, including the feedback and cascading effects, as implied by the cause-effect relationships 

between the events occurring in different processes. Furthermore, it is envisaged to be used for assessing the 

potential effects of accidents or catastrophic events, and for developing the appropriate prevention measures. 

The procedures derived from the model will be applied to analyzing the mutual impacts between the processes 

realized in the oil and container terminals, forecasting negative effects of these impacts along with assessing 

their costs, and planning preventive actions aimed at avoiding such effects. 

 
1. Notation and Definitions  
 

1.1 The overall characteristic of processes and 

events 

p1,…,pn – the individual processes as the constitutive 

elements of the considered environment; n – the 

number of these processes 

E1
(i)

,…,Em(i)
(i)

 – different hazardous events that can 

occur in the process pi; m(i) – the number of such 

events 

1
(i)

,…,m(i)
(i)

 – the intensities with which 

E1
(i)

,…,Em(i)
(i)

 occur as primary events, i.e. not 

caused by another event in any process (given data) 

Xa
(i)

 – the strength of Ea
(i)

; a random variable with 

values in a finite set S={1,…,s} 

a
(i)

(x) – the probability that the strength of an 

primary Ea
(i)

 is equal to x (given data) 

a
(i)

(>x) – the probability that the strength of an 

primary Ea
(i)

 exceeds x; note that 

a
(i)

(>x) = y>xa
(i)

(y) 

Na
(i)

(s,t) – the number of occurrences of a primary 

Ea
(i)

 of any strength in the (s, t] time interval; a 

random variable 

Na
(i)

(s,t,x) – the number of occurrences of a primary 

Ea
(i)

 of strength x in the (s, t] time interval; a 

random variable 

   the “inverted pi” operator used to compute the 

probabilities of sums of independent events, i.e. 

 

                   
 
      

 

              
 
     

 

where A1,…,Ar are independent events 

 

1.2 The cause-effect probabilities  

b,a
(j,i)

(y, x) – the probability that Eb
(j)

 of strength y 

directly causes Ea
(i)

 of strength x (given data) 

b,a
(j,i)

(y, >x) – Pr (Eb
(j)

 of strength y directly causes 

Ea
(i)

 of strength greater than x); note that b,a
(j,i)

(y, 

>x) =  z>x b,a
(j,i)

(y, x) 
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b,a
(j,i)

(, x) – Pr (Eb
(j)

 of any strength directly causes 

Ea
(i)

 of strength x) 

b,a
(j,i)

(, >x) – Pr (Eb
(j)

 of any strength directly causes 

Ea
(i)

 of strength greater than x) 

b,a
(j,i)

(y, x; h) – the probability that Eb
(j)

 of strength y 

causes Ea
(i)

 of strength x as a result of h-step (but 

not less-than-h-step) cascading effect, h2 

b,a
(j,i)

(y, >x; h), b,a
(j,i)

(  , x; h), b,a
(j,i)

(  , >x; h) – 

the probabilities defined analogously to 

b,a
(j,i)

(y, >x), b,a
(j,i)

(  , >x), b,a
(j,i)

(  , >x) 

The probabilities b,a
(j,i)

 with various arguments will 

be called the cause-effect probabilities, as they 

quantify the cause-effect relations between the events 

occurring within the analyzed multi-process 

environment. 

 

1.3 Various types of risks 

ra
(i)

(s, t, >x) – the risk that at least one event Ea
(i)

 of 

strength >x occurs as a primary event in the (s, t] 

interval, 1 a m(i);   

rb,a
(j,i)

(s, t, >x) – the risk that Eb
(j)

 (an event in pj) 

directly causes at least one occurrence of Ea
(i)

 (an 

event in pi) of strength > x in the (s, t] interval, 

where ba for j=i; 

Ra
(i)

(s, t, x, 1) – the total risk that at least one Ea
(i)

 of 

strength x occurs (in pi) in the (s, t] interval, as a 

direct effect of any event Eb
(j)

 in any process pj, 

(b,j)(a,i). The capital letter  R indicates that all 

processes rather than one contribute to the risk. 

Ra
(i)

(s, t, x, h) – the total risk that at least one Ea
(i)

 of 

strength x occurs (in pi) in the (s, t] interval, as a h-

step (but not less-than-h-step) cascading effect of 

any event Eb
(j)

 in any process pj, h2. 

Ra
(i)

(s, t, x, 1) – the total risk that at least one Ea
(i)

 of 

strength x occurs (in pi) in the (s, t] interval, as a 

cascading effect of any step and any event Eb
(j)

 in 

any process pj. 

Ra
(i)

(s, t, >x, 1), Ra
(i)

(s, t, >x, h), Ra
(i)

(s, t, >x, 1) – 

the total risks defined as the three above ones, x 

being replaced by >x. 

 

2. Introduction  
 

The functioning of a port can be considered, 

according to the systems approach, as a set of 

processes which represent the operations carried out 

in various facilities, both within the port premises 

and in the surrounding areas. The aim of this work is 

to construct a model of hazard-related 

interdependence of these processes. This model 

should describe the impact of hazardous events 

originating in one process (caused by the operations 

carried out within a given process) on the risks of 

events adversely affecting the other processes. 

The analytical part of the task, apart from defining 

the interactions between the processes, will include 

the analysis of feedback and cascading effects that 

can result from the mutual dependencies between the 

events occurring in different processes. The main 

analytical result consists in deriving the formulas 

which on the one hand express the risks of events of 

different types as triggered by other events in the 

same or other processes, and, on the other hand, 

quantify the consequences that a given event can 

entail, in the sense of adverse impact it can have on 

its own and other processes. Such formulas allow to 

assess the risk of the occurrence of a harmful event 

as a direct or indirect consequence of other events, as 

well as to assess the risk of a harmful impact that a 

given event has in the sense of  causing other such 

events. They can be applied to the development and 

implementation of safeguards protecting against, or 

mitigating the effects of, hazard-related mutual 

impacts among the considered processes. 

The events occurring in the individual processes 

are quantified by the random variables expressing the 

strength of each event. These variables can have 

“crisp” numerical values, or “non-crisp” descriptive 

values, i.e. fuzzy or linguistic ones, e.g. the strength 

of an event can be extreme, high, significant, 

considerable, medium, low, etc. The used 

quantification approach depends on the degree of 

accuracy of the intended risk analysis, and the 

amount and character of the available data. The 

applicable mathematical tools are the 

probability/possibility theory, evidence (Dempster-

Schafer) theory, and simple arithmetic. 

The considered harmful events are divided in 

four categories: primary (occurring by themselves), 

directly caused (by another event), indirectly caused 

by a cascading effect, and indirectly caused by a 

feedback effect. A cascading effect takes place when 

the events occur, on a cause-effect basis, in a series 

whose length exceeds 2; the first event is a primary 

one, and each other event in the series is directly 

caused by the preceding one. We will say that an 

event is a result of a h-step cascading effect if the 

event’s number in the cause-effect series is h+1. A 

directly caused event can be regarded as a result of a 

1-step cascading effect. A feedback effect is a special 

case of a cascading effect, where the last event in a 

series is an instance of the first event. More 

accurately, a feedback effect occurs if the event Ea
(i)

 

causes, by means of a h-step cascading effect (h2), 

another instance of Ea
(i)

, possibly of different 

strength. A feedback effect cannot be a 1-step 
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cascading effect, due to the natural assumption that 

an event cannot be directly caused by itself, i.e. 

 

   a,a
(i,i)

(y,x) = 0, i{1,…,n}, a{1,…,m(i)}   (1) 

 

However, we admit the possibility of the internal 

impact which occurs if an event is directly caused by 

another event in the same process, i.e. 

 

   b,a
(i,i)

(y,x)  0, ba      (2) 

 

It is also assumed that the primary events are 

independent, both within one process, and among all 

the considered processes, i.e. the instances of 

E1
(i)

,…,Em(i)
(i)

, i=1,…,n, as primary events, are 

mutually independent. 

For the sake of computational tractability it is 

desirable that the sequences of cascading events 

caused by different primary event be mutually 

independent. If we assume that the events in a 

cascade follow each other in a quick succession, i.e. 

the time of the last event in a cascade triggered by a 

primary event always precedes the time of the next 

primary event (or, if there are delays between 

successive events in a cascade, that no two events 

can coincide), then this requirement is fulfilled by 

virtue of the following lemma.  

 

Lemma 1 
 

The sequences of cascading events caused by 

different triggering events are independent (Clearly, 

the events in one cascade are not independent). 

 

Proof: the lemma follows directly from the 

assumption of the mutual independence of the 

instances of primary events, and the impossibility of 

causing one non-primary event by two primary ones, 

i.e. the impossibility of the occurrence of a common 

event in two cause-effect chains (clearly, chains with 

a common event would be mutually dependent). This 

impossibility is a consequence of the assumed 

instantaneousness of a cascading effect. 

 

In Figure 1 a diagram illustrating the interaction of 

three processes is presented. E2
(1)

 is a primary event 

in p1, causing an occurrence of E3
(2)

 which, in turn, 

causes an occurrence of E4
(1)

. The above three events 

form a cascade chain of step 2. As shown in the 

picture, a certain time elapses between E2
(1)

 and E3
(2)

, 

and then between E3
(2)

 and E4
(1)

, thus E2
(1)

 and E3
(2)

 

do not have instantaneous effect. However, we 

assume that such an effect is possible, as in the case 

of E4
(2)

 and E3
(3)

. Furthermore, one event can directly 

cause two or more secondary events, as E4
(2)

 does. A 

harmful event may cause a temporary break in a 

process, E1
(2)

 and E3
(3)

 being examples of such 

events, which is illustrated by discontinuities in the 

time axes for p1 and p2. 

 

 

Figure 1. A diagram of three processes’ 

interaction 

 

Practical implementation of the developed model 

should consist of four phases: 

1. Identifying hazards involved in the individual 

processes, and evaluating/estimating/assessing the 

intrinsic risks ra
(i)

(s, t, >x), 1 i n, 1 a  m(i). 

2. Identifying hazard-related interactions between the 

processes, and evaluating/estimating/assessing the 

extrinsic risks ra,b
(i,j)

(s, t, >x), 1 a  m(i), 1 b m(j), 

ji; i,j{1,…,n}. 

3. Calculating all the risks defined in Section 1. 

4. Developing procedures aimed at mitigation, 

minimization or elimination of possible harmful 

consequences of the identified hazards, using the 

risks calculated in step 3. 

 

3. Examples of real-life scenarios described 

by the processes interaction model  
 

Let the processes and harmful events be defined as 

follows: 

p1 – ship traffic to and from the oil and container 

terminals 

E1
(1)

 – collision with a pier/breakwater 

E2
(1)

 – vessel on fire 

E3
(1)

 – damage on vessel not caused by E1
(1)

 

p2 – truck traffic to and from the container terminal 

E1
(2)

 – truck collision 

E2
(2)

 – truck accident other than collision 

p3 – cargo storage and handling in the container 

terminal 

E1
(3)

 – crane accident 

E2
(3)

 – fire in the storage yard 

E
2

(1)
 

E
3

(2)

 

E
3

(3)
 

E
4

(1)
 

E
1

(2)
 

E
4

(2)

 

p
1
 p

2
 p

3
 

E
1

(1)
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 p4 – oil storage (onshore tanks) and transport 

(pipeline) 

E1
(4)

 – pipeline breakage and oil spill 

E2
(4)

 – onshore tank fire 

p5 – weather extremes 

E1
(5)

 – lightning 

E2
(5)

 – violent storm 

E3
(5)

 – arrival of extreme heat (>35C) 

E4
(5)

 – arrival of heavy frost (<–20C)  

 

Catastrophic scenario 1: 

E2
(2)

 – truck accident other than collision (tire burst 

and skidding) 

 
E1

(4)
 – pipeline breakage and oil spill (truck skids 

into the pipeline) 

   

        E2
(4)

 – onshore tank fire (due to crash-related 

           ignition of the spreading oil spill) 

 
E2

(1)
 – vessel on fire (due to flow of burning oil into 

the port basin) 

 

E2
(1)

 and E2
(4)

 occur as a result of a cascading effect 

of step 2. The basic reason of these events is the 

truck route passing too close to the pipeline. 

  

Catastrophic scenario 2: 

E2
(5)

 – violent storm 

 
E1

(3)
 – crane accident (collapse of the crane boom) 

 
E3

(1)
 – damage on vessel (caused by the collapsing 

boom) 

 

E3
(1)

 occurs as a result of a cascading effect of step 2. 

The basic reason of this event is the mooring of the 

damaged vessel within the range of the collapsing 

boom. 

 

4. Formulas for the cause-effect probabilities 

defined in section 1.2  
 

In this section, we will derive formulas for the cause-

effect probabilities defined in 1.2. Let us point out 

that in order to use the obtained formulas we only 

need the quantities marked in section 1 as “given 

data”. First, the “direct effect” probabilities b,a
(j,i)

(, 

x) and b,a
(j,i)

(, >x), where b  a if j=i, will be 

calculated. It holds that: 

 

       
            

 

         

 

 
 

  
   

               

                  
   

             
  

 
 

   

 

        

  
   

             

                   
   

             

        

 

         
   

     
   

        
   

        

 

        
            

             (3)

     

and  

 

       
              

 

          

  
   

               

                  
   

              

    

 

            

  
   

             

                  
   

              

        

 

             
        

   
        

   
        

 

 

              
   

     
   

          

 

                 
   

      

 

 

             
            

               (4) 

 

Now we pass to the calculation of the probabilities 

related to the cascading effect of degree h2. To 

make the analysis more detailed, different formulas 

will be obtained depending on whether the internal 

impact and/or the feedback effect are taken into 

consideration or not. 

 

Lemma 2 
 

If both the internal impact and feedback effect are 

taken into consideration, then b,a
(j,i)

(y, >x, h), where 

h2, is given by the following recursive formula: 
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                    (5) 

 

where  

 

       
                  

              

 

            
                   (6) 

 

Remark 1: 

Under the adopted assumptions, (5) also holds for 

(j,b)=(i,a), and (k,c)=(i,a) is in the range of the 

“inverted pi” operator (feedback effect). However, it 

should be remembered that b,c
(j,k)

(y,z) = 0 for 

(k,c)=(j,b) and c,a
(k,i)

(z, >x, 1) = 0 for (k,c)=(i,a) – 

see (1). 

 

Remark 2: 

If (k,c)=(i,a), then z>x are not in the range of the 

summation operator, because taking such z into 

consideration would amount to admitting the 

possibility that Eb
(j)

 directly causes Ea
(i)

 of strength 

>x. This would contradict the requirement that Ea
(i)

 

of strength >x cannot be a less-than-h-step cascading 

effect of Eb
(j)

. 

 

Proof of (5): 

 

    
                

 

  

 

 
 
 

  
                 
                 

                      

     
   

               

                              

 
 
 

   

 

           
                  

                  
       

          

   

 

where 

 

      
                 

 

    

 
 
 
 
 

 
 
 
   

   
              

               

  
   

               

      
                   

                       
                      

     
   

              

                              
 
 
 
 

 
 
 
 

 

 

The latter probability is equal to 

 

      
     

         
                   

       
          

  

 

         
                

 

which fact follows from Lemma 1 stating that the 

sequences of cascading events caused by different 

triggering events (namely, the events Ec
(k)

) are 

independent. The proof is thus completed. 

 

Using (5) we obtain the following “aggregate” 

probabilities: 

 

       
                

 

      
          

                          (7) 

 

and 

 

       
                 

                       (8) 

 

Lemma 3 
 

If the internal impact is not taken into consideration, 

but the feedback effect is, we have: 

 

       
                

 

         
     

         
                   

            

          

   

  

            
                       (9) 

 

Note that k=j is not in the range of the “inverted pi”, 

otherwise an internal impact within pj would be taken 

into account. For h=2 (9) changes to: 

 

       
                

 

         
     

                        
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               (10) 

 

Note that now k=i and k=j are not in the range of the 

“inverted pi”, otherwise an internal impact in pi or pj 

would be taken into account. Also note that the 

summation over zS is not limited to zx for 

(k,c)=(i,a), because k=i is not in the range of the 

“inverted pi”. 

 

If the feedback is not taken into consideration, then 

the following two lemmas hold:  

 

Lemma 4 
 

If the feedback effect is not taken into consideration, 

but the internal impact is, then we have: 

 

       
                

 

         
     

               
          
            

 

 

            
                     (11) 

 

where (j,b)(i,a) – otherwise Ea
(i)

 would be a h-step 

feedback effect of itself. For a similar reason 

(k,c)=(i,a) is not in the range of the “inverted pi” – 

otherwise Ea
(i)

 would be a (h–1)-step feedback effect 

of itself. In consequence, the summation over zS is 

not limited to zx for (k,c)=(i,a) as in (5) or (9). 

 

Lemma 5 
 

If both the feedback effect and internal impact are 

not taken into consideration, then it holds that 

 

       
                

 

             
     

                     

          
           

 

 

                
                     (12) 

 

where (j,b)(i,a). Note that (k,c)=(i,a) is not in the 

range of the “inverted pi” – otherwise Ea
(i)

 would be 

a (h–1)-step feedback effect of itself. Also, k=j is not 

in that range – otherwise an internal impact in pj 

would be taken into account. For h=2 (12) changes 

to: 

 

       
                

 

             
     

                         

          

 

 

                
               (13) 

 

where (j,b)(i,a). Note that k=j and k=i are not in the 

range of the “inverted pi” – otherwise an internal 

impact in pj or pi would be taken into account. 

 

The proofs of Lemmas 3–5 are similar to that of 

Lemma 2. As to the formulas for “aggregate” 

probabilities, i.e. (7) and (8), they hold for all the 

cases considered in Lemmas 3–5, where the 

probabilities b,a
(j,i)

(y, >x; h) are given by (9)-(13).  

 

5. Formulas for various types of risks defined 

in section 1.3  
 

In this section we will present several theorems 

stating that the occurrences of Ea
(i)

, whether as a 

primary or a secondary event, constitute a Poisson 

process with the appropriate intensity. The formulas 

for risks defined in sections 1.3 are given as 

corollaries to the respective theorems. As in the 

previous section, the obtained formulas use only the 

quantities marked in section 1 as “given data”. 

 

Theorem 1 
 

Primary events Ea
(i)

 of strength x constitute a Poisson 

process with the intensity a
(i) 
a

(i)
(x), while those of 

strength greater than x – a P. process with the 

intensity a
(i) 
a

(i)
(>x). 

 

Proof: It follows from the adopted assumptions that 

the primary events Ea
(i)

 of any strength constitute a 

Poisson process with the intensity a
(i)

, hence we 

have:  
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The above derivation indicates that the first part of 

the thesis is true. 

In the same way it is proved that the occurrences 

of Ea
(i)

 of strength >x constitute a Poisson process 

with the intensity a
(i)
a

(i)
(>x). 

 

Corollary 1: 

The “primary” risks ra
(i)

(s, t, x) and ra
(i)

(s, t, >x) are 

given by the following formulas: 

 

     
             

 

                
         

            (14) 

 

and 

 

     
              

 

                
          

           (15) 

 

Now we pass to the calculation of the 

total risk that one or more events Ea
(i)

 of strength 

x or exceeding x occur on the (s, t] interval, 

provided that all the processes can contribute to 

Ea
(i)

.  

 

Theorem 2 (direct impact, no cascading effect) 
 

The events Ea
(i)

 of strength x or greater than x, 

directly caused by primary events Eb
(j)

 of any 

strength, constitute a Poisson process with the 

intensity b
(j) 
 b,a

(j,i)
( , x) or b

(j) 
 b,a

(j,i)
( , >x) 

respectively, where the probabilities  b,a
(j,i)

(  , x) 

and  b,a
(j,i)

(  , >x) are given by (3) and (4). 

Further, the occurrences of Ea
(i)

 of strength x 

or greater than x, directly caused by any primary 

event in any process (including pi), constitute a 

Poisson process with the intensities given by the 

following formulas: 
 

     
           

 

          
   

     
                 

                        

 (16) 

 

and 

 

     
            

 

          
   

     
                  

                        

 (17) 

 

Proof: Let Nb,a
(j,i)

(s,t,x) be the number of the events 

Ea
(i)

 of strength x, directly caused by primary events 

Eb
(j)

 of any strength. We have: 

 

       
                  

 

 

       

 

 
 

             
   

 

              

           
   

             

 
   

          

 

 
 

  
     

  

              
              

 

 

       
 
      

           
 
       

           
   

  
     

 

         
   

   
        

 

  
       

   
         

 

Proceeding further as in the proof of Theorem 1 we 

obtain the following formula: 
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In the same way we obtain 

 

       
                   

 

    
   

   
     

                       
 

  
  

 

                
   

     
                     

 

The first part of the thesis is thus proved. For the 

proof of the second part let us note that the primary 

events Eb
(j)

, j{1,…,n}, b{1,…,m(j)}, ba for j=i, 

occur independently, thus it follows from Lemma 1 

that the occurrences of Ea
(i)

 directly caused by these 

Eb
(j)

-s can be regarded as a superposition of 

independent Poisson processes, hence their intensity 

is equal to the sum of the intensities of the individual 

processes. 

 

Corollary 2: 

The “secondary” risks rb,a
(j,i)

(s, t, x) and rb,a
(j,i)

(s, t, >x) 

are given by the following formulas: 

 

       
               

 

                
   

     
                  (18) 

 

and 

 

       
                

 

                
   

     
                   (19) 

 

Corollary 3: 

The total risks Ra
(i)

(s, t, x, 1) and Ra
(i)

(s, t, >x, 1) are 

given by the following formulas: 

 

     
               

 

                
                 (20) 

 

and 

 

     
                

 

                
                  (21) 

 

where a
(i)

(x,1) and a
(i)

(>x,1) are given by (16) and 

(17). 

 

Theorem 3 (cascading effect of step h2) 

 

The events Ea
(i)

 of strength x or greater than x, each 

of which is a h-step (but not less-than-h-step) 

cascading effect of a primary event Eb
(j)

 of any 

strength, constitute a Poisson process with the 

intensity b
(j) 
b,a

(j,i)
(  , x, h) or b

(j) 
b,a

(j,i)
(  , >x, h) 

respectively, where the probabilities b,a
(j,i)

(  , x, h) 

and b,a
(j,i)

(  , >x, h) are given by the formulas in 

Lemmas 2 – 5. We recall that these formulas differ 

depending on whether the internal impact and/or 

feedback effect are taken into consideration.  

Further, the events Ea
(i)

 of strength x or 

greater than x, each of which is a h-step (but not 

less-than-h-step) cascading effect of any primary 

event in any process (including pi), constitute a 

Poisson process with the intensities given by the 

following formulas: 
 

     
           

 

          
   

     
                   

          

  (22) 

 

and 

 

     
            

 

          
   

     
                    

          

  (23) 

 

If the feedback effect is not taken into consideration, 

then (j,b)=(i,a) is excluded from the range of the 

summation operator in (22) and (23) – see Lemmas 4 

and 5.  

 

Proof: the proof is similar to that of Theorem 2. 

 

Corollary 4: 

The total risks Ra
(i)

(s, t, x, h) and Ra
(i)

(s, t, >x, h), 

h2, are computed from the following formulas: 

 

     
               

 

                
                 (24) 

and 

 

     
                

 

                
                  (25) 

 

where a
(i)

(x, h) and a
(i)

(>x, h) are given by (22) 

and (23). 
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Theorem 4 (cascading effect of any step) 

The events Ea
(i)

 of strength x or greater than x, each 

of which is a cascading effect of any step h1 of a 

primary event Eb
(j)

 of any strength, constitute a 

Poisson process with the intensity 

b
(j) 
 h1 b,a

(j,i)
( , x, h) or b

(j) 
 h1  b,a

(j,i)
( , >x, h) 

respectively.  

Further, the events Ea
(i)

 of strength x or 

greater than x, each of which is a cascading 

effect of any step h1 of any primary event in 

any process (including pi), constitute a Poisson 

process with the intensities given by the 

following formulas: 

 

     
             

             (26) 

 

and 

 

     
              

              (27) 

 

where a
(i)

(x, h) and a
(i)

(>x, h) are given by (22) 

and (23). 

 

Proof: The secondary events Ea
(i)

, each of which 

occurs as a cascading effect of any step triggered by 

a primary event Eb
(j)

, constitute a superposition of 

Poisson processes Xh, h1, where the process Xh is a 

sequence of Ea
(i)

-s, each of which occurs as a 

cascading effect of step h (but not less-than-h) 

triggered by a primary event Eb
(j)

. These processes 

are independent, because, by one of the basic 

assumptions, the triggering events of the events Ea
(i)

 

in the compound process are independent. The first 

part of the thesis is thus a consequence of the first 

part of Theorem 3. 

The secondary events Ea
(i)

, each of which is a 

result of a cascading effect of any step triggered by 

any primary event, constitute a superposition of 

Poisson processes Xh, h1, where the process Xh is a 

sequence of Ea
(i)

-s, each of which is a result of a h-

step (but not less-than-h-step) cascading effect 

triggered by any primary event. These processes are 

independent, by the same argument as used in the 

first part of the proof. Thus, the second part of the 

thesis is a consequence of the second part of 

Theorem 3. 

 

Corollary 5: 

The total risks Ra
(i)

(s, t, x, 1) and Ra
(i)

(s, t, >x, 1) 

can be found from the following formulas: 

 

     
                

 

                
                  (28) 

and 

     
                 

 

                
                   (29) 

 

where a
(i)

(x, 1) and a
(i)

(>x, 1) are given by (26) 

and (27). 

 

To end this section, we point out a problem that can 

be encountered when attempting to calculate the 

overall risk that the event Ea
(i)

 of strength x occurs in 

the time interval (s,t], as a primary event or as a 

result of a cascading effect of step h, h1. Let this 

risk be denoted as Ra
(i)

(s,t,x,0). Let us define, in 

addition to Na
(i)

(s,t) defined in section 1, the 

following (Poisson) processes: 

Nb,a
(j,i)

(s,t,x) – number of occurrences of Ea
(i)

 of 

strength x, as directly caused by Eb
(j)

 

Nb,a
(j,i)

(s,t,x,h) – number of occurrences of Ea
(i)

 of 

strength x, as a result of a cascading effect of
 
step h 

triggered by Eb
(j)

, h2.  

We have:  

 

Ra
(i)

(s,t,x,0) = 

 

    Pr[ Na
(i)

(s,t,x) +  (j,b)  (i,a), b{1,…,m(j)} Nb,a
(j,i)

(s,t,x) + 

 

        +  h2  j{1,…,n}, b{1,…,m(j)} Nb,a
(j,i)

(s,t,x,h)  1 ] 

 

It would be possible to easily compute the above 

probability if the three underlying processes were 

independent, because the superposition of 

independent Poisson processes is also a Poisson 

process. However, Nb,a
(j,i)

(s,t,x) and Nb,a
(j,i)

(s,t,x,h) are 

not independent of Na
(i)

(s,t), as their composing 

events are triggered by the events in Na
(i)

(s,t). A way 

to tackle the above problem will be a topic of further 

research. 

 

6. Conclusion  
 

The main purpose of this paper is to define and 

calculate the risks of various unwanted or harmful 

events that can occur during the operations carried 

out in or around a port area, where the hazard-related 

aspects of those operations are modeled by a set of 

mutually dependent stochastic point processes. The 

dependence between the processes follows from the 

fact that events occurring in one process can cause 

events in the other processes, thus, apart from the 

primary events (assumed to occur independently), 

there also occur secondary events as a result of 

cascading or feedback effect. The derived formulas 

are effect-oriented in the sense that they express the 
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total probabilities of the considered events without 

specifying the degree to which individual primary 

events contribute to these probabilities. However, the 

obtained formulas can be modified to the cause-

oriented ones, i.e. quantifying the possible effects of 

individual primary events.  This will be the subject of 

future work. 
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