PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Facile green synthesis of Cinnamomum tamala extract capped silver nanoparticles and its biological applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The plant mediated biogenic synthesis of nanoparticles is of magnificent concern due to its eco-benign and single pot nature. Here, Cinnamomum tamala (C. tamala) aqueous leaf extract was utilised for the silver nanoparticles’ (Ag NPs) synthesis. The phytoconstituents in the leaf extract were analysed by standard methods. These metabolites, especially carbohydrate polymers reduce Ag ions to Ag NPs accompanied by a reddish-brown coloration of the reaction mixture. The visual observation of intense brown colour is the first indication of the formation of Ag NPs. Various spectro-analytical techniques further characterise the Ag NPs. The green synthesised spherical Ag NPs were crystalline with an average size of 38 nm. The Ag NPs were scrutinised for antioxidant, antimicrobial and cytotoxic activity and obtained good results. The free radical scavenging was studied by 2, 2-Diphenyl-l-picrylhydrazyl (DPPH) assay. The antibacterial activity of Ag NPs was assessed against human pathogens, and it shown to have good antibacterial potency against a wide spectrum of bacteria. The cytotoxic activity against HEK-293T (human embryonic kidney) cell line was evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. These potent biological activities enable C. tamala capped Ag NPs to be suitable candidates for the future applications in various fields, predominantly clinical and biomedical.
Rocznik
Strony
7--21
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
  • Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
  • Department of Medicine, Thomas Jefferson University, Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA
  • Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
autor
  • Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, 671316, Kerala, India
  • Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, 671316, Kerala, India
  • Amrita School for Sustainable Development (AST), Amrita Vishwa Vidyapeetham, Amrita University, Amritapuri, Clappana P.O. Kollam 690525, Kerala, India
  • Amrita School for Sustainable Development (AST), Amrita Vishwa Vidyapeetham, Amrita University, Amritapuri, Clappana P.O. Kollam 690525, Kerala, India
  • Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 46117 Liberec 1, Czech Republic
  • Amrita School for Sustainable Development (AST), Amrita Vishwa Vidyapeetham, Amrita University, Amritapuri, Clappana P.O. Kollam 690525, Kerala, India
Bibliografia
  • [1] Nguyen NHA, Padil VVT, Slaveykova VI, Černík M, Ševců A. Green synthesis of metal and metal oxide nanoparticles and their effect on the unicellular alga Chlamydomonas reinhardtii. Nanoscale Res Lett. 2018;13:1-13. DOI: 10.1186/s11671-018-2575-5.
  • [2] Soltys L, Olkhovyy O, Tatarchuk T, Naushad M. Green synthesis of metal and metal oxide nanoparticles: Principles of green chemistry and raw materials. Magnetochemistry. 2021;7. DOI: 10.3390/magnetochemistry7110145.
  • [3] Bharathi D, Diviya Josebin M, Vasantharaj S, Bhuvaneshwari V. Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities. J Nanostructure Chem. 2018;8:83-92. DOI: 10.1007/s40097-018-0256-7.
  • [4] Rout Y. Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. J Microbiol Antimicrob. 2012;4:788-91. DOI: 10.5897/JMA11.060.
  • [5] Huq MA, Ashrafudoulla M, Rahman MM, Balusamy SR, Akter S. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers. 2022;14:1-22. DOI: 10.3390/polym14040742.
  • [6] Lee SH, Jun BH. Silver nanoparticles: Synthesis and application for nanomedicine. Int J Mol Sci. 2019;20. DOI: 10.3390/ijms20040865.
  • [7] Murali Krishna I, Bhagavanth Reddy G, Veerabhadram G, Madhusudhan A. Eco-friendly green synthesis of silver nanoparticles using Salmalia malabarica: Synthesis, characterisation, antimicrobial, and catalytic activity studies. Appl Nanosci. 2016;6:681-9. DOI: 10.1007/s13204-015-0479-6.
  • [8] Sudha A, Jeyakanthan J, Srinivasan P. Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resource-Efficient Technol. 2017;3:63-74. DOI: 10.1016/j.reffit.2017.07.002.
  • [9] Arun G, Eyini M, Gunasekaran P. Green synthesis of silver nanoparticles using the mushroom Fungus Schizophyllum commune and its biomedical applications. Biotechnol Bioprocess Eng. 2014;19:1083-90. DOI: 10.1007/s12257-014-0071-z.
  • [10] Varma RS. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014;16:2027-41. DOI: 10.1039/c3gc42640h.
  • [11] Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab J Chem. 2019;12:3576-600. DOI: 10.1016/j.arabjc.2015.11.002.
  • [12] Hudlikar M, Joglekar S, Dhaygude M, Kodam K. Latex-mediated synthesis of ZnS nanoparticles: Green synthesis approach. J Nanoparticle Res. 2012;14:1-6. DOI: 10.1007/s11051-012-0865-x.
  • [13] Zare EN, Padil VVT, Mokhtari B, Venkateshaiah A, Wacławek S, Černík M, et al. Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications. Adv Colloid Interface Sci. 2020;283:1-17. DOI: 10.1016/j.cis.2020.102236.
  • [14] Hebbalalu D, Lalley J, Nadagouda MN, Varma RS. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem Eng. 2013;1:703-12. DOI: 10.1021/sc4000362.
  • [15] Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res. 2016;7:17-28. DOI: 10.1016/j.jare.2015.02.007.
  • [16] Akhtar N, Ihsan-ul-Haq MirzaB. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arab J Chem. 2018;11:1223-35. DOI: 10.1016/j.arabjc.2015.01.013.
  • [17] Mohammadinejad R, Karimi S, Iravani S, Varma RS. Plant-derived nanostructures: Types and applications. Green Chem. 2015;18:20-52. DOI: 10.1039/c5gc01403d.
  • [18] Kumar H, Bhardwaj K, Dhanjal DS, Nepovimova E, Șen F, Regassa H, et al. Fruit extract mediated green synthesis of metallic nanoparticles: A new avenue in pomology applications. Int J Mol Sci. 2020;21:1-18. DOI: 10.3390/ijms21228458.
  • [19] Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol. 2018;16:1-28. DOI: 10.1186/s12951-018-0334-5.
  • [20] Alagesan V, Venugopal S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience. 2019;9:105-16. DOI: 10.1007/s12668-018-0566-8.
  • [21] Mustapha T, Misni N, Ithnin NR, Daskum AM, Unyah NZ. A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications. Int J Environ Res Public Health. 2022;19. DOI: 10.3390/ijerph19020674.
  • [22] Hassan W, Zainab Kazmi SN. Antimicrobial activity of Cinnamomum tamala leaves. J Nutr Disord Ther. 2015;06:2161-0509. DOI: 10.4172/2161-0509.1000190.
  • [23] Mal D, Gharde SK, Chatterjee R. Chemical constituent of Cinnamom umtamala: An important tree spices. Int J Curr Microbiol. 2018;7:648-51. DOI: 10.20546/ijcmas.2018.704.073.
  • [24] Thakur S, Chaudhary G. Review based upon ayurvedic and traditional uses of Cinnamomum tamala (Tejpatta). Int J Pharm Sci Rev Res. 2021;68:71-8. DOI: 10.47583/ijpsrr.2021.v68i02.011.
  • [25] Upadhyay RK. Therapeutic and pharmaceutical potential of Cinnamomum tamala. Res Rev: Pharm Pharm Sci. 2017; 6:18-28. Available from: https://www.rroij.com/.
  • [26] Chakraborty U, Das H. Antidiabetic and antioxidant activities of Cinnamomum tamala leaf extracts in STZ-treated diabetic rats. Glob J Biotechnol Biochem. 2010;5:12-8. ISSN: 2078-466X.
  • [27] Sharma G, Nautiyal AR. Cinnamomum tamala: A valuable tree from Himalayas. Int J Med Aromat Plants. 2011;1:1-4. Available from: http://www.openaccessscience.com/.
  • [28] Kumar S, Kumari R, Mishra S. Pharmacological properties and their medicinal uses of Cinnamomum: A review. J Pharm Pharmacol. 2019;71:1735-61. DOI: 10.1111/jphp.13173.
  • [29] Ahmed A, Iqbal Choudhary M, Farooq A, Demirci B, Demirci F, Hüsnü Can Başer K. Essential oil constituents of the spice Cinnamomum tamala (Ham.) Nees and Eberm. Flavour Fragr J . 2000;15:388-90. DOI: 10.1002/1099-1026(200011/12)15:6<388::AID-FFJ928>3.0.CO;2-F.
  • [30] Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, et al. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials. 2018;11:940. DOI: 10.3390/ma11060940.
  • [31] Kumar A, Kumar AA, Nayak AP, Mishra P, Panigrahy M, Sahoo PK, Panigrahi KCS. Carbohydrates and polyphenolics of extracts from genetically altered plant acts as catalysts for in vitro synthesis of silver nanoparticle. J Biosci. 2019;44:1-10. DOI: 10.1007/s12038-018-9826-6.
  • [32] Weli AM, Al-Salmi S, al Hoqani H, Hossain MA. Biological and phytochemical studies of different leaves extracts of Pteropyrum scoparium. Beni-Suef Univ J. Basic Appl Sci. 2018;7:481-6. DOI: 10.1016/j.bjbas.2018.05.001.
  • [33] Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl Nanosci. 2016;6:755-66. DOI: 10.1007/s13204-015-0473-z.
  • [34] Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostructure Chem. 2019;9:1-9. DOI: 10.1007/s40097-018-0291-4.
  • [35] Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, de Oca-Vásquez GM, Vega-Baudrit JR. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials. 2020;10:1-24. DOI: 10.3390/nano10091763.
  • [36] Oluwaniyi OO, Adegoke HI, Adesuji ET, Alabi AB, Bodede SO, Labulo AH, et al. Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana juss and its antimicrobial activities. Appl Nanosci. 2016;6:903-12. DOI: 10.1007/s13204-015-0505-8.
  • [37] Verma A, Mehata MS. Controllable synthesis of silver nanoparticles using neem leaves and their antimicrobial activity. J Radiat Res Appl Sci. 2016;9:109-15. DOI: 10.1016/j.jrras.2015.11.001.
  • [38] Narath S, Koroth SK, Shankar SS, George B, Mutta V, Wacławek S, et al. Cinnamomum tamala leaf extract stabilized zinc oxide nanoparticles: A promising photocatalyst for methylene blue degradation. Nanomaterials. 2021;11:1558. DOI: 10.3390/nano11061558.
  • [39] Verma DK, Hasan SH, Banik RM. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. J Photochem Photobiol B. Biol. 2016;155:51-9. DOI: 10.1016/j.jphotobiol.2015.12.008.
  • [40] Ziarani GM, Ashtiani ST, Mohajer F, Badiei A, Gaikwad SV, Varma RS. 2,3-dihydro-quinazolin-4(1H)-one as a fluorescent sensor for Hg ion and its docking studies in cancer treatment. Chem Didact Ecol Metrol. 2022;27(1-2):25-33. DOI: 10.2478/cdem-2022-0004.
  • [41] Waclawek S, Fijalkowski M, Bardos P, Koci J, Scholz S, Hirsch P, et al. How can hybrid materials enable a circular economy? Ecol Chem Eng S. 2022;29(4):447-62. DOI: 10.2478/ECES-2022-0030.
  • [42] Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci. 2016;6:399-408. DOI: 10.1007/s13204-015-0449-z.
  • [43] Wacławek S. Do we still need a laboratory to study advanced oxidation processes? A review of the modelling of radical reactions used for water treatment. Ecol Chem Eng S. 2021;28:11-28. DOI: 10.2478/eces-2021-0002.
  • [44] Nadagouda MN, Iyanna N, Lalley J, Han C, Dionysiou DD, Varma RS. Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustain Chem Eng. 2014;2:1717-23. DOI: 10.1021/sc500237k.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4eb4c7b9-7f5a-42e7-a612-f86ef29df55e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.