Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We propose a design of series-connected one-dimensional photonic crystal nanofiber cavity sensor (1-D PC-NCS) and one-dimensional photonic crystal nanofiber bandgap filter (1-D PC-NBF). The proposed structure can get a single air mode for refractive index sensing with its extinction ratio of 58.64 dB. It filters out the high order mode and reduces the interaction between signals. By 3D FDTD, the calculated sensitivity is 848.18 nm/RIU (RIU – refractive index unit). Compared with general silicon on-chip nanobeam cavity, the sensitivity is increased by eight times. The additional 1-D PC-NBF will not change the sensitivity and the position of the resonance wavelength. Therefore, the new design we propose addresses the issue of crosstalk, and can be applied to ultra-high sensitivity index-based gas sensing and biosensing without the need for complicated coupling systems.
Czasopismo
Rocznik
Tom
Strony
199--207
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- International School, Beijing University of Posts and Telecommunications, Beijing 100876, China
autor
- International School, Beijing University of Posts and Telecommunications, Beijing 100876, China
autor
- International School, Beijing University of Posts and Telecommunications, Beijing 100876, China
autor
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
autor
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Bibliografia
- [1] FAN X., WHITE I.M., SHOPOVA S.I., ZHU H., SUTER J.D., SUN Y., Sensitive optical biosensors for unla-beled targets: a review, Analytica Chimica Acta 620(1–2), 2008, pp. 8–26, DOI:10.1016/j.aca.2008.05.022.
- [2] CHEN G.Y., DING M., NEWSON T.P., BRAMBILLA G., A review of microfiber and nanofiber based optical sensors, Open Optics Journal 7(1), 2013, pp. 32–57, DOI:10.2174/1874328501307010032.
- [3] YANG D., CHEN X., ZHANG X., LAN C., ZHANG Y., High-Q, low-index-contrast photonic crystal nanofiber cavity for high sensitivity refractive index sensing, Applied Optics 57(24), 2018, pp. 6958–6965, DOI:10.1364/AO.57.006958.
- [4] HILL K.O., MALO B., BILODEAU F., JOHNSON D.C., ALBERT J., Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask, Applied Physics Letters 62(10),1993, pp. 1035–1037, DOI:10.1063/1.108786.
- [5] YU Y., XIAO T.-H., GUO H.-L., LI Z.-Y., Sensing of microparticles based on a broadband ultrasmall microcavity in a freely suspended microfiber, Photonics Research 5(3), 2017, pp. 143–150, DOI:10.1364/PRJ.5.000143.
- [6] POLYNKIN P., POLYNKIN A., PEYGHAMBARIAN N., MANSURIPUR M., Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels, Optics Letters30(11), 2005, pp. 1273–1275, DOI:10.1364/OL.30.001273.
- [7] KUDE V.P., KHAIRNAR R.S., Fabrication and numerical evaluation of the tapered single mode optical fiber: detection of change in refractive index, Indian Journal of Pure and Applied Physics 46(1), 2008, pp. 23–29.
- [8] SUI C., WU P., YE B., Highly sensitive sensor for detecting refractive index change of liquids using single microfiber, [In] 2010 3rd International Nanoelectronics Conference (INEC), 2010, pp. 1343–1344, DOI:10.1109/INEC.2010.5424870.
- [9] WANG P., BRAMBILLA G., DING M., SEMENOVA Y., WU Q., FARRELL G., High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference, Optics Letters 36(12),2011, pp. 2233–2235, DOI:10.1364/OL.36.002233.
- [10] BIAZOLI C.R., SILVA S., FRANCO M.A.R., FRAZÃO O., CORDEIRO C.M.B., Multimode interference tapered fiber refractive index sensors, Applied Optics 51(24), 2012, pp. 5941–5945, DOI:10.1364/AO.51.005941.
- [11] HILL K.O., MELTZ G., Fiber Bragg grating technology fundamentals and overview, Journal of Light-wave Technology 15(8), 1997, pp. 1263–1276, DOI:10.1109/50.618320.
- [12] YANG D., TIAN H., JI Y., QUAN Q., Design of simultaneous high-Q and highsensitivity photonic crystal refractive index sensors, Journal of the Optical Society of America B 30(8), 2013, pp. 2027–2031, DOI:10.1364/JOSAB.30.002027.
- [13] ZHI Y., YU X.-C., GONG Q., YANG L., XIAO Y.-F., Single nanoparticle detection using optical microcavities, Advanced Materials 29(12), 2017, article 1604920, DOI:10.1002/adma.201604920.
- [14] LIANG F., GUO Y., HOU S., QUAN Q., Photonic-plasmonic hybrid single molecule nanosensor measures the effect of fluorescent labels on DNA-protein dynamics, Science Advances 3(5), 2017, article e1602991, DOI:10.1126/sciadv.1602991.
- [15] ZHANG Y., LIU P., ZHANG S., LIU W., CHEN J., SHI Y., High sensitivity temperature sensor based on cascaded silicon photonic crystal nanobeam cavities, Optics Express 24(20), 2016, pp. 23037–23043, DOI:10.1364/OE.24.023037.
- [16] QUAN Q., FLOYD D.L., BURGESS I.B., DEOTARE P.B., FRANK I.W., TANG S.K.Y., ILIC R., LONCAR M., Single particle detection in CMOS compatible photonic crystal nanobeam cavities, Optics Express 21(26), 2013, pp. 32225–32233, DOI:10.1364/OE.21.032225.
- [17] LIANG F., CLARKE N., PATEL P., LONCAR M., QUAN Q., Scalable photonic crystal chips for high sensitivity protein detection, Optics Express 21(26), 2013, pp. 32306–32312, DOI:10.1364/OE.21.032306.
- [18] QUAN Q., LONCAR M., Deterministic design of wavelength scale, ultra-high Q photonic crystal nano-beam cavities, Optics Express 19(19), 2011, pp. 18529–18542, DOI:10.1364/OE.19.018529.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ea8d00a-6157-4d60-bd44-7fda1bd069f2