PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the addition of pine chips waste on the properties of the concrete mix

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of a preliminary study of concrete samples with pine chips: the search for the optimum proportion of concrete mixture and waste in the mix, its workability, and the mortar’s bending and compressive strength. By building on the properties of the concrete mix, which reaches its maximum strength value with time, the preparation time of plates is reduced by the pressing and drying process. The effect of the percentage of chips in the mix and the effect of chip fraction on mortar strength - bending test and stretching test are used. The research is conducted to determine the possibility of reusing wood waste in fibre-cement composites for construction applications. Depending on the chip fraction, they gained positive characteristics, the beam with a finer fraction achieved greater strength, similar to a concrete beam. Unground chips, on the other hand, maintained the bond, which did not occur in the finer fraction.
Słowa kluczowe
Rocznik
Strony
20--29
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, pl. Marii Skłodowskiej-Cuire 5, 60-965 Poznan, Poland
  • Department of Civil Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, pl. Marii Skłodowskiej-Cuire 5, 60-965 Poznan, Poland
autor
  • Faculty of Chemical Technology, Poznan University of Technology, pl. Marii Skłodowskiej-Cuire 5, 60-965 Poznan, Poland
Bibliografia
  • 1. Bergeron, F. C. (2016). Energy and climate impact assessment of waste wood recovery in Switzerland. Biomass and Bioenergy, 94, 245–257. https://doi.org/10.1016/j.biombioe.2016.09.009
  • 2. Eurostat. (n.d.). EU packaging waste generation with record increase. Eurostat. https://europa.eu/eurostat
  • 3. Pommer, E.-H. (2000). Wood, preservation. In Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co.). https://doi.org/10.1002/14356007.a28_357
  • 4. Cetiner, I., & Shea, A. D. (2018). Wood waste as an alternative thermal insulation for buildings. Energy and Buildings, 168, 374–384. https://doi.org/10.1016/j.enbuild.2018.03.019
  • 5. Elginoz, N., van Blokland, J., Safarian, S., Movahedisaveji, Z., Yadeta Wedajo, D., & Adamopoulos, S. (2024). Wood waste recycling in Sweden—Industrial, environmental, social, and economic challenges and benefits. Sustainability, 16, 5933. https://doi.org/10.3390/su16145933
  • 6. Gigar, F. Z., Khennane, A., Liow, J.-L., Al-Deen, S., Tekle, B. H., Fitzgerald, C. J., Basaglia, A., & Webster, C. L. (2024). Advancing sustainable construction materials: Wood, rubber, and cenospheres geopolymer masonry units development. Sustainability, 16, 3283. https://doi.org/10.3390/su16083283
  • 7. Kotwica, J. (2011). Struktura, budowa i właściwości drewna: Drewno stosowane w budownictwie; Konstrukcje drewniane w budownictwie tradycyjnym. Arkady.
  • 8. Ramage, M. H., Burridge, H., Busse-Wicherc, M., Fereday, G., Reynolds, T., Shah, D. U., Wu, G., Yu, L., Fleming, P., Densley-Tingley, D., Allwood, J., Dupree, P., Lindenb, P. F., & Scherman, O. (2017). The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68(1), 333–359. https://doi.org/10.1016/j.rser.2016.09.107
  • 9. Environmental Protection Department. (2017). Monitoring of Solid Waste in Hong Kong: Waste statistics for 2015. Hong Kong: HK EPD.
  • 10. Lasy Państwowe. (2024, October 2). Surowiec do wszystkiego. https://www.lasy.gov.pl/pl/drewno/surowiec-do-wszystkiego
  • 11. Krišt’ák, L., & Réh, R. (2021). Application of wood composites. Applied Sciences, 11, 3479. https://doi.org/10.3390/app11083479
  • 12. Szymczak-Graczyk, A., Gajewska, G., Ksit, B., Laks, I., Kostrzewski, W., Urbaniak, M., & Pawlak, T. (2024). Application of experimental studies of humidity and temperature in the time domain to determine the physical characteristics of a perlite concrete partition. Materials, 17, 4938. https://doi.org/10.3390/ma17194938
  • 13. Decorte, Y., Steeman, M., & Van Den Bossche, N. (2024). Integrating the energy performance gap into life cycle assessments of building renovations. Sustainability, 16, 7792. https://doi.org/10.3390/su16177792
  • 14. OneClickLCA. (2024, October 4). Life cycle stages. https://oneclicklca.zendesk.com/hc/en-us/articles/360015064999-Life-Cycle-Stages
  • 15. Dansk Beton. (n.d.). EPD of the concrete. ONECLICK.
  • 16. Træ.dk. (n.d.). EPD of the cross laminated timber. ONECLICK.
  • 17. Stahlwerk Thüringen GmbH. (n.d.). EPD of the structural steel. ONECLICK.
  • 18. Paris, M., Roessler, J. G., Ferraro, C. C., DeFord, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production, 121, 1–18. https://doi.org/10.1016/j.jclepro.2016.02.013
  • 19. Heinz, O., & Heinz, H. (2021). Cement interfaces: Current understanding, challenges, and opportunities. Langmuir, 37(21), 6347–6356. https://doi.org/10.1021/acs.langmuir.1c00617
  • 20. Arachchige, U. S. P. R., Alagiyawanna, A. M. A. K. M., Balasuriya, B. M. C. M., Chathumin, K. K. G. L., Dassanayake, N. P., & Devasurendra, J. W. (n.d.). Environmental pollution by cement industry. Faculty of Technology, University of Sri Jayewardenepura, Sri Lanka.
  • 21. Bórawski, P., Bełdycka-Bórawska, A., Holden, L., & Rokicki, T. (2022). The role of renewable energy sources in electricity production in Poland and the background of energy policy of the European Union at the beginning of the COVID-19 crisis. Energies, 15, 8771. https://doi.org/10.3390/en15228771
  • 22. Sonae Industria, S.G.P.S., S.A/Glunz AG. (n.d.). EPD product declaration AGEPAN and GREEN-LINE oriented strand board. ONECLICK.
  • 23. Tellnes, L. G. F., & Rønning, A. R. (2019). Modelling options for module C and D: Experiences from 50 EPD for wood-based products in Norway. IOP Conference Series: Earth and Environmental Science, 323, 012052. https://doi.org/10.1088/1755-1315/323/1/012052
  • 24. Kim, Y. (2018). Current researches on the protection of exterior wood from weathering. Journal of the Korean Wood Science and Technology, 46, 449–470. https://doi.org/10.5658/WOOD.2018.46.5.449
  • 25. Sagan, J. (2024). Selektywna zbiórka odpadów na budowie: Ocena stanu aktualnego, wymagania prawne i wyzwania rynkowe. Materiały Budowlane, 9(625), 29–32.
  • 26. Dombal. (2024, October 4). Płyta OSB czy MFP? Porównanie wad i zalet. https://dombal.com.pl/plyta-osb-czy-mfp-porownanie-wady-i-zalety
  • 27. Kline, D. E. (n.d.). Gate-to-gate life-cycle inventory of oriented strandboard production. Brooks Forest Products Center, Virginia Tech, Blacksburg, VA 2406.
  • 28. Direske, M., Procházka, J., & Wenderdel, C. (n.d.). Factors influencing the mat forming process via aerodynamic spreading in cement-bonded particleboard production. https://doi.org/10.1007/s00107-020-01612-y
  • 29. Hossain, M. U., Wang, ., Yu, I. K. M., Tsang, D. C. W., & Poon, C.-S. (2018). Environmental and technical feasibility study of upcycling wood waste into cement-bonded particleboard. Construction and Building Materials, 173, 828–836. https://doi.org/10.1016/j.conbuildmat.2018.04.066
  • 30. Palharini, K. M., Guimaraes Junior, J. B., Faria, D. L., Mendes, R. F., Protasio, T. D. P., & Mendes, L. M. (2018). Potential usage of the urban pruning residue for production of wood-based panels. Nativa, 6, 321. https://doi.org/10.31413/nativa.v6i3.5418
  • 31. Cremonini, C., Negro, F., & Zanuttini, R. (2015). Wood-based panels for land transport uses. Drewno, 58(195), 125–137. https://doi.org/10.12841/wood.1644-3985.125.11
  • 32. Ince, C., Tayançlı, S., & Derogar, S. (2021). Recycling waste wood in cement mortars towards the regeneration of a sustainable environment. Construction and Building Materials, 299, 123891. https://doi.org/10.1016/j.conbuildmat.2021.123891
  • 33. Lasy Państwowe. (2024, October 2). Surowiec do wszystkiego. https://www.lasy.gov.pl/pl/drewno/surowiec-do-wszystkiego
  • 34. Elshahawi, M., Hückler, A., & Schlaich, M. (2021). Infra lightweight concrete: A decade of investigation (a review). Structural Concrete, 22, E152–E168. https://doi.org/10.1002/suco.202000206
  • 35. Efimov, B., Isachenko, S., Kodzoev, M.-B., Dosanova, G., & Bobrova, E. (2019). Dispersed reinforcement in concrete technology. E3S Web of Conferences, 110, e01032. https://doi.org/10.1051/e3sconf/201911001032
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ea6aa23-b86a-4b0a-8c6f-b9f374db6271
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.