Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes the modeling and economic analysis of proton exchange membrane type fuel cells. The fuel cell is an electrochemical device that changes energy from chemical to electrical energy. FC offers clean and effective energy production and it undergoes rigorous growth by numerous manufacturers with different applications. Fuel cells are a promising new technology for the generation of electrical energy. This technology contains hydrogen and oxygen to produce electrical energy through the electrochemical process. A mathematical model of an FC is developed which shows the cathode and anode, output voltage, and economic analysis of the fuel cells. The Simulation results of the fuel cell for a suitable converter Controller are proposed in Matlab 2021b software.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
187--195
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
autor
- Department of EECE, GIT, Visakhapatnam, A.P, India
autor
- Department of EECE, GIT, Visakhapatnam, A.P, India
Bibliografia
- 1. Addala S., Naidu I.E.S. Power quality enrichment in fuel cell distribution generation integrated with CPD’s. International Conference on Breakthrough in Heuristics And Reciprocation of Advanced Technologies (BHARAT), Visakhapatnam, India, 2022, 1–4. doi: 10.1109/BHARAT53139.2022.00016.
- 2. Prasad K.R., Prasath S.R. Performance analysis of fuel cell powered electric vehicle using MATLAB. International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 2022, 1–8. doi: 10.1109/ICCCI54379.2022.9741060.
- 3. Zhai D., Zhang J., Shen J., Y Li. Optimal scheduling of hydrogen energy storage ies with dual-fuel cells. International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2022, 960–966. doi: 10.1109/ICPRE55555.2022.9960655.
- 4. Cheng Y., Zhang L., Chen Q., Shen X. Energy Management Strategy of Fuel Cell Backup Power Systems Based on Model Predictive Control. 12th International Conference on Power, Energy and Electrical Engineering (CPEEE), Shiga, Japan, 2022, 86–90. doi: 10.1109/CPEEE54404.2022.9738674.
- 5. Agila W., Rubio G., Aviles-Cedeno J., González L. Approximate reasoning techniques in the control of states of operation of the PEM fuel cell. 11th International Conference on Smart Grid (icSmartGrid), Paris, France, 2023, 1–6. doi: 10.1109/icSmartGrid58556.2023.10170778.
- 6. Correa J.M., Farret F.A., Popov V.A., Simoes M.G. Sensitivity analysis of the modeling parameters used in Simulation of proton exchange membrane fuel cells. In IEEE Transactions on Energy Conversion 2005; 20(1): 211-218. doi: 10.1109/TEC.2004.842382.
- 7. Correa J.M., Farret F.A., Canha L.N., Simoes M.G. An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. In IEEE Transactions on Industrial Electronics Oct. 2004, 51(5): 1103–1112. doi: 10.1109/TIE.2004.834972.
- 8. Sohani S., Naderi, F. Torabi. Application based multiobjective performance optimization of a proton exchange membrane fuel cell. Journal of Cleaner Production 2020; 252: 119567.
- 9. Sohani, S. Naderi, and F. Torabi. Comprehensive comparative evaluation of different possible optimization scenarios for a polymer electrolyte membrane fuel cell. Energy Conversion and Management 2019; 191: 247–260.
- 10. El-Shafie M., Kambara S., Hayakawa Y. Hydrogen production technologies overview. Journal of Power and Energy Engineering 2019; 7(1): 107–154.
- 11. Rau F., Herrmann A., Krause H., Fino D., Trimis D. Production of hydrogen by autothermal reforming of biogas. Energy Procedia 2017; 120: 294–301.
- 12. Rashid M.M., Al Mesfer M.K., Naseem H., Danish M. Hydrogen production by water electrolysis. a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. International Journal of Engineering and Advanced Technology 2015; 4(3): 80–93.
- 13. Sanath Y., De Silva K., Middleton P.H., Kolhe M. Performance analysis of single cell alkaline electrolyser using mathematical model. Material Science and Engineering 2019; 605: 012002.
- 14. Dufour C., Das T.K., Akella S. Real time simulation of proton exchange membrane fuel cell hybrid vehicle. Proc of the CPC-05, Global powertrain congress, Ann Harbor, USA, Sept 2003.
- 15. Mann R.F., Amphlett J.C., Hooper M.A.I., Jensen H.M., Peppley B.A., Roberge P.R. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources 2000; 86: 173–180.
- 16. Baschuck J.J., Li X. Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding. Journal of Power Sources 2000; 86:181–196.
- 17. Chu D., Jiang R. Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks - Part I. Evaluation and simulation of an air-breathing PEMFC stack. Journal of Power Sources 1999; 83: 128–133.
- 18. Corrêa J.M., Farret F.A., Canha L.N. An analysis of the dynamic performance of proton exchange membrane fuel cells using an electromechanical model in Proc. IEEE Ind. Electronics Conf., 2001, 141–146.
- 19. Narain G. Hingorani., Laszlo Gyugyi. Understanding FACTS- Concepts and Technology of Flexible AC Transmission Systems, New York, 2000 IEEE Press.
- 20. Wang C., Nehrir M.H., Shaw S.R. Dynamic models and model validation for PEM fuel cells using electrical circuits. IEEE Transactions on Energy Conversion 2005; 20(2): 442–451.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ea27643-a532-4a7b-bcf4-20585ce3b281