PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Frequency extension and robust full waveform inversion based on nth power operation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The conventional full-waveform inversion (FWI) often minimizes the objective function using some local optimization algorithms. As a result, when the initial model is not good enough, the inversion process will drop into a local minimum. The low-frequency components contained in seismic data are of vital importance for reducing the initial model dependence and mitigating the cycle-skipping phenomenon of FWI. In this research, a frequency extension method using the nth power operation is proposed, which compresses the seismic data in time domain and extends their frequency band. Based on this, we construct a new objective function using the nth power wavefeld and derive the corresponding gradient formula. The new objective function shows better property to overcome local minimum than the conventional one. When conduct inversion, we can invert from high-order to low-order successively, which is a new multiscale strategy. Since seismic data is more sensitive to source wavelet errors after high-order operation, we make the method more robust by proposing a source-independent method to mitigate the efects of source wavelet inaccuracy. After that, we extend the proposed method to encoded multisource waveform inversion. The numerical examples on the Marmousi model demonstrate that the proposed method can efectively mitigate the cycle-skipping of FWI, and it also has good anti-noise property.
Czasopismo
Rocznik
Strony
1317--1333
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
autor
  • College of Geo-exploration Science and Technology, Jilin University, Changchun, China
  • Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China
autor
  • College of Geo-exploration Science and Technology, Jilin University, Changchun, China
autor
  • School of Earth Science and Geological Engineering, Sun Yat-sen University, Guangzhou, China
  • College of Geo-exploration Science and Technology, Jilin University, Changchun, China
  • College of Geo-exploration Science and Technology, Jilin University, Changchun, China
Bibliografia
  • 1. Baeten G, Maag JW, Plessix RE, Klaassen R, Qureshi T, Kleemeyer M, Kroode F, Zhang RJ (2013) The use of low frequencies in a full-waveform inversion and impedance inversion land seismic case study. Geophys Prospect 61(4):701–711
  • 2. Bharadwaj P, Mulder WA, Drijkoningen G (2013) Multi-objective full waveform inversion in the absence of low frequencies. 83th SEG annual international meeting, expanded abstracts, pp 964–968
  • 3. Bharadwaj P, Mulder WA, Drijkoningen G (2016) Full waveform inversion with an auxiliary bump functional. Geophys J Int 206(2):1076–1092
  • 4. Boonyasiriwat C, Schuster GT (2010) 3D multisource full-waveform inversion using dynamic random phase encoding. 80th SEG annual international meeting, expanded abstracts, pp 1044–1049
  • 5. Boonyasiriwat C, Valasek P, Routh P, Cao WP, Schuster GT, Macy B (2009) A efficient multiscale method for time-domain waveform tomography. Geophysics 74(6):WCC59–WCC68
  • 6. Bozdağ E, Trampert J, Tromp J (2011) Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophys J Int 185(2):845–870
  • 7. Bunks C, Saleck FM, Zaleski S, Chavent G (1995) Multiscale seismic waveform inversion. Geophysics 60(5):1457–1473
  • 8. Chen SC, Chen GX (2019) Full waveform inversion based on time-integral-damping wavefield. J Appl Geophys 163:84–95
  • 9. Chen G, Wu RS, Wang Y, Chen S (2018) Multi-scale signed envelope inversion. J Appl Geophys 153:113–126
  • 10. Chi BX, Dong LG, Liu YZ (2014) Full waveform inversion method using envelope objective function without low frequency data. J Appl Geophys 109:36–46
  • 11. Choi Y, Alkhalifah T (2011) Source-independent time-domain waveform inversion using convolved wavefields: application to the encoded multisource waveform inversion. Geophysics 76(5):R125–R134
  • 12. Fei TW, Luo Y, Qin FH et al (2012) Full waveform inversion without low frequencies: a synthetic study. 82th SEG annual international meeting, expanded abstracts, pp 641–645
  • 13. Gauthier O, Virieux J, Tarantola A (1986) Two-dimensional nonlinear inversion of seismic waveforms: numerical results. Geophysics 51(7):1387–1403
  • 14. Hu WY (2014) FWI without low frequency data-beat tone inversion. 84th SEG annual international meeting, expanded abstracts, pp 1116–1120
  • 15. Hu Y, Han LG, Xu Z, Zhang FJ, Zeng JW (2017) Adaptive multi-step full waveform inversion based on waveform mode decomposition. J Appl Geophys 139:195–210
  • 16. Krebs JR, Anderson JE, Hinkley D, Neelamani R, Lee S, Baumstein A, Lacasse MD (2009) Fast full-wavefield seismic inversion using encoded sources. Geophysics 74(6):WCC177–WCC188
  • 17. Li YE, Demanet L (2016) Full-waveform inversion with extrapolated low-frequency data. Geophysics 81(6):R339–R348
  • 18. Li Y, Choi Y, Alkhalifah T, Li ZC, Zhang K (2018) Full-waveform inversion using a nonlinearly smoothed wavefield. Geophysics 83(2):R117–R127
  • 19. Lian S, Yuan S, Wang G, Liu T, Liu Y, Wang S (2018) Enhancing low-wavenumber components of full-waveform inversion using an improved wavefield decomposition method in the time-space domain. J Appl Geophys 157:10–22
  • 20. Liu Y, He B, Lu H, Zhang Z, Xie XB, Zheng Y (2018) Full-intensity waveform inversion. Geophysics 83(6):R649–R658
  • 21. Luo JR, Wu RS (2015) Seismic envelope inversion: reduction of local minima and noise resistance. Geophys Prospect 63:597–614
  • 22. Luo JR, Xie XB (2017) Frequency-domain full waveform inversion with an angle-domain wavenumber filter. J Appl Geophys 141:107–118
  • 23. Ma H, Qian Z, Li Y, Lin H, Shao D, Yang B (2019) Noise reduction for desert seismic data using spectral kurtosis adaptive bandpass filter. Acta Geophys 67:123–131
  • 24. Moghaddam PP, Keers H, Herrmann FJ, Mulder WA (2013) A new optimization approach for source-encoding full-waveform inversion. Geophysics 78(3):R125–R132
  • 25. Naghizadeh M, Sacchi M (2018) Ground-roll attenuation using curvelet downscaling. Geophysics 83(3):V185–V195
  • 26. Plessix RE (2006) A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys J Int 167:495–503
  • 27. Pratt RG (1999) Seismic waveform inversion in the frequency domain, part I: theory and verification in a physical scale model. Geophysics 64:888–901
  • 28. Sheng JM, Leeds A, Buddensiek M, Schuster GT (2006) Early arrival waveform tomography on near-surface refraction data. Geophysics 71(4):U47–U57
  • 29. Shin C, Cha YH (2008) Waveform inversion in the Laplace domain. Geophys J Int 173:922–931
  • 30. Shin C, Cha YH (2009) Waveform inversion in the Laplace–Fourier domain. Geophys J Int 177:1067–1079
  • 31. Sun H, Gao C, Zhang Z, Liao X, Wang X, Yang J (2020) High-resolution anisotropic prestack Kirchhoff dynamic focused beam migration. IEEE Sens J. https://doi.org/10.1109/JSEN.2019.2933200
  • 32. Tarantola A (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics 49(8):1259–1266
  • 33. Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74(6): WCC127–WCC152
  • 34. Wang RR, Herrmann F (2016) Frequency down-extrapolation with TV norm minimization. 87th SEG annual international meeting, expanded abstracts, pp 1380–1384
  • 35. Wang Y, Wu RS, Chen G, Peng Z (2018) Seismic modulation model and envelope inversion with smoothed apparent polarity. J Geophys Eng 15:2278–2286
  • 36. Warner M, Nangoo T, Shah N, Umpleby A, Morgan J (2013) Full-waveform inversion of cycle-skipped seismic data by frequency down-shifting. 84th SEG annual international meeting, expanded abstracts, pp 903–907
  • 37. Wu RS, Luo JR, Wu BY (2014) Seismic envelope inversion and modulation signal model. Geophysics 79(3):WA13–WA24
  • 38. Xie XB (2013) Recover certain low-frequency information for full waveform inversion. 83th SEG annual international meeting, expanded abstracts, pp 1053–1057
  • 39. Xu Y, Cao S, Pan X, Liu W, Chen H (2019) Random noise attenuation using a structure-oriented adaptive singular value decomposition. Acta Geophys 67:1091–1106
  • 40. Yu P, Li Y, Lin H, Wu N (2016) Removal of random noise in seismic data by time-varying window-length time-frequency peak filtering. Acta Geophys 64:1703–1714
  • 41. Yuan S, Wang S, Luo C, Wang T (2018) Inversion-based 3-D seismic denoising for exploring spatial edges and spatio-temporal signal redundancy. IEEE Geosci Remote Sens Lett 15(11):1682–1686
  • 42. Yuan S, Wang S, Luo Y, Wei W, Wang G (2019) Impedance inversion by using the low-frequency full-waveform inversion result as an a priori model. Geophysics 84(2):R149–R164
  • 43. Zhang P, Han LG, Zhou Y et al (2015) Passive-source multitaper-spectral method based low-frequency data reconstruction for active seismic sources. Appl Geophys 12(4):585–597
  • 44. Zhang P, Han LG, Xu Z et al (2017) Sparse blind deconvolution based low-frequency seismic data reconstruction for multiscale full waveform inversion. J Appl Geophys 139:91–108
  • 45. Zhang P, Wu RS, Han LG (2018) Source-independent seismic envelope inversion based on the direct envelope Fréchet derivative. Geophysics 83(6):R581–R595
  • 46. Zhang P, Han LG, Yin YC, Feng Q (2019a) Passive seismic full waveform inversion using reconstructed body-waves for subsurface velocity construction. Explor Geophys 50(2):124–135
  • 47. Zhang P, Wu RS, Han LG (2019b) Seismic envelope inversion based on hybrid scale separation for data with strong noises. Pure Appl Geophys 176(1):165–188
  • 48. Zhao Q, Du Q, Li Q, Fu L (2020) Robust dictionary learning for erratic noise-corrupted seismic data reconstruction. Acta Geophys 68:687–700
  • 49. Zhou CX, Cai WY, Luo Y, Schuster GT, Hassanzadeh S (1995) Acoustic wave-equation traveltime and waveform inversion of crosshole seismic data. Geophysics 60(3):765–773
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e9eb540-43b8-46d9-8641-fb3bef722d9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.