
INFORMATION 
SYSTEMS  IN  

MANAGEMENT Information Systems in Management (2016)  Vol. 5 (1)  144−158 

CONTEXT-DRIVEN META-MODELER  
(CDMM-META-MODELER) APPLICATION CASE-STUDY 

PIOTR ZABAWA
 a),  GRZEGORZ FITRZYK

 b),  KRZYSZTOF NOWAK
 c)  

a) Department of Physics, Mathematics and Computer Science, Cracow University  
of Technology, Cracow, Poland 

b) graduate of Department of Physics, Mathematics and Computer Science,  
Cracow University of Technology, Cracow, Poland 

c) Department of Civil Engineering, Cracow University of Technology, Cracow, Poland 

The main contribution of this paper is the working case study for meta-modeling 
process performed in open ontologies. It contrasts to close ontology based approach-
es well known from software engineering discipline. Moreover, in place of ontologi-
cal standards like Resource Description Framework (RDF) defined by World Wide 
Web Consortium (W3C) or Web Ontology Language (OWL) by W3C and Object 
Management Group (OMG), the presented meta-modeling approach is based on no-
tions characteristic for software engineering, like class, relationship, Unified Model-
ing Language (UML), UML Profile, stereotype, meta-model as well as for enterprise 
applications. This approach is feasible as it refers to the concept of Context-Driven 
Meta-Modeling (CDMM) introduced in previous papers and implemented in the 
form of Context-Driven Meta-Modeling Framework (CDMM-F). The case study is 
realized in the form of graphical UML modeling of the modeling language (meta-
model) in the Context-Driven Meta-Modeling Meta-Modeler (CDMM-Meta-
Modeler) Thus the presented case-study constitutes the proof-of-the-concept for 
graphical meta-modeling for all mentioned concepts and their implementations.  
It also displays the nature of the meta-modeling process in this paradigm and ex-
plains some mechanisms that play important role when process effectiveness and 
convenience of the meta-model designer are taken into account. 

Keywords: meta-model; application context; open ontology; modeling language; 
meta-modeling process; visual modeling; UML; UML Profile 



145 

1. Introduction 

This paper presents a case study for the modeling language design process.  
It is based on Context-Driven Meta-Modeling Paradigm (CDMM-P) [31] and Con-
text-Driven Meta-Modeling Framework (CDMM-F). The CDMM-F constitutes 
one possible implementation of the CDMM-P. The name and the special role of the 
application context in CDMM-F implementation of the CDMM-P are explained in 
[27]. The diagramming problem for open ontology based approach to meta-
modeling is the main subject of the paper. 

The meta-modeling case study is performed in the Context-Driven Meta-
Modeling Meta-Modeler (CDMM-Meta-Modeler) tool presented earlier in [7] but 
introduced on the CDMM background in [29]. The CDMM-Meta-Modeler is the 
Eclipse PlugIn based on UML2 Eclipse PlugIn and implemented with the aid of 
relatively large number of technologies named in [7, 29]. The paper [29] is focused 
on the implementation issues of CDMM-Meta-Modeler while the presented paper 
is addressed to the visual meta-modeling process issues. 

Wide and careful research of scientific and commercial literature was per-
formed and can be found mainly in [31]. The conclusion from the research was that 
there are no direct references to the approaches similar to the one introduced in 
[31]. Some literature located on the border of ontology and software engineering 
domain can be identified, however it explores RDF or OWL standards for ontolo-
gies [1, 3, 4, 5, 8, 9, 14, 15, 16, 23] or refers to the systems of notions (ontologies) 
used in software engineering discipline and addressed mainly to the notions of 
software engineering process [6, 10, 17, 22, 24]. 

In the paper some notions which are well known in software engineering dis-
cipline are used and they refer to Object Management Group (OMG) standards like 
Unified Modeling Language(UML) [2, 21, 12, 13]. There are also papers that are 
focused on the process of meta-modeling, like [20, 18, 19, 26, 25]. These two 
groups of papers are the closest to the system of notion used in the paper. Accord-
ing to [11] open ontologies are not known and are not applied to software engineer-
ing discipline. The authors are not aware of any reference in the scientific literature 
to date to the presented CDMM approach, so the paper constitutes the first contri-
bution to the subject, related to visual modeling. 

2. Context-Driven Meta-Modeling Meta-Modeler 

The CDMM-Meta-Modeler tool was presented in the context of CDMM con-
cept in [29]. Nevertheless, it is shortly characterized in this section. 

The tool has the form of Eclipse PlugIn and was implemented in the following 
technologies: Eclipse RCP, Java SE, Equinox OSGi, JavaFX, SWT, JFace and 
UML2 SDK. The role of it is to offer the graphical UML modeling framework for 



146 

meta-model designer and integrate to CDMM-F and UML2 SDK PlugIn. This way 
the model of the modeling language can be created in standard UML way, it can be 
explored from any software system via UML2 PlugIn API and, first of all, the ap-
plication context file for CDMM-F can be created, as shown in [27]. 

The main functionalities of the CDMM-Meta-Modeler were presented in [29], 
so only the most critical ones are contained in the paper in the form of Table 1. 
 

Table 1. Most critical functional features of CDMM-Meta-Modeler 

Functional feature Purpose 

UML Profile diagramming Defining stereotypes for meta-model entity and relation classes 
UML class diagramming for 
meta-model elements 

Defining meta-model entity and relation classes 
Stereotyping meta-model entity classes 

UML class diagramming for 
meta-model graph 

Placing meta-model entity classes (stereotyped or not) as meta-
model graph nodes 
Stereotyping meta-model entity classes 
Introducing associative (composition, aggregation, association) and 
dependency relationships as meta-model graph edges connecting 
meta-model entity classes 
Stereotyping meta-model graph edges with the names of meta-
model relation classes 

Creating meta-model graph 
XML representation 

Exporting simple graph representation or application context to be 
loaded by CDMM-F 

 
The functionalities shown in Table 1 play the key role in the case study dis-

cussed in section 3. 

3. CDMM-Meta-Modeler Application Case-Study 

This section presents a case study for the application of the CDMM-Meta-
Modeler Eclipse PlugIn. In the case study a sample modeling language (meta-
model) is created from the CDMM-Meta-Modeler according to open ontology. 

3.1. Sample Meta-Model 

Our goal in the case-study is to create the modeling language (meta-model) 
presented in the Figure 1. The following coloring convention is assumed in the 
whole case-study: a) red color represents CDMM-F elements; b) green color repre-
sents meta-model entities, that is - elements that can be placed in meta-model graph 
nodes; c) blue color represents meta-model relations, that is - elements that can be 
placed in meta-model graph edges; d) grey color represents elements of the meta-
model graph which are not expressed in CDMM-Meta-Modeler notation. 



147 

The diagrams presented in Figure 1, Figure 4, Figure 5 and Figure 7 were cre-
ated in commercial modeling tool while the remaining diagrams (Figures 2-3 and 
Figure 6) were created in CDMM-Meta-Modeler. 
 

 
Figure 1. Sample CDMM-F meta-model defined in a UML modeling tool 

 
The meta-model presented above is used to construct modeling language 

through diagramming in CDMM-Meta-Modeler.  The modeling language defined 
in the Figure 1 can be used to model static information about a software system. 
Models created in this language may contain information known from UML class 
diagrams. However the meta-model contains pairs of relationships of the same kind 
which are very frequently met in meta-models. In contract to CDMM-Meta-
Modeler notation shown in the Figure 5, they are expressed in UML.  

It is worth noticing that in this meta-model some meta-model entity classes 
(DGeneralization, DClass, DClassDependency and DAssociation) are connected to 
the CDMM-F core meta-model root class (RootMeatmodelCore) via relationships. 
This way the user-defined meta-model classes are associated to CDMM-F directly 
(via mentioned relations) or indirectly (via user-defined relationships already exist-
ing in the meta-model). In the case of the CDMM-Meta-Modeler the association of 
meta-model to the CDMM-F root class is achieved via stereotyping of classes ac-
cording to the subsection 3.4. 



148 

3.2. Sample Meta-Model Entity Classes 

In order to define the entities of the meta-model presented in the Figure 1, 
which is created in CDMM-Meta-Modeler, the appropriate classes should be de-
fined in the form of Java source code or in the form of CDMM-Meta-Modeler clas-
ses. The round-trip engineering technique can be applied for their definition.  
The CDMM-Meta-Modeler class diagram that contains definitions of the meta-
model entities is presented in the Figure 2a. 
 

  
Figure 2. Sample CDMM-F meta-model a) entities and b) relations defined  

in CDMM-Meta-Modeler 

It is worth noticing that these classes: are not interconnected in any form; are 
not connected to any user-defined meta-model relationship classes; the classes that 
are intended to be connected to the root CDMM-F class are stereotyped by the 
name of the root class (RootMetamodelCore). 

All these classes will be placed in the nodes of meta-model graph, what is 
presented in subsection 3.6. 

3.3. Sample Meta-Model Relations Classes 

The meta-model user-defined relationship classes are also defined in CDMM-
Meta-Modeler in the way similar to definition of meta-model entity classes. Their 
definition for the sample meta-model from the Figure 1 is presented in the Figure 
2b. The user-defined meta-model relationship classes are not interconnected in any 
form and are not connected to any user-defined meta-model entity classes. 



149 

One of these classes can be reused in order to associate «RootMeat-
modelCore» stereotyped meta-model entity classes to CDMM-F root class. Never-
theless, one such default relationship class is predefined in CDMM-F and distribut-
ed with the framework. This class can be reused when meta-model graph is de-
signed. The way these meta-model relationship classes are used while meta-model 
graph definition is explained in subsection 3.6. 

3.4. Connection to CDMM-F 

The characteristic feature of open ontology based meta-modeling is that there 
are no compile-time relationships between any classes of the meta-model. The only 
relationships allowed are with the CDMM-F classes, however they are not present-
ed in the diagrams above (except the one from the Figure 1) for simplification  
(except the «RootMetamodelCore» stereotype). However, the nature of these meta-
model associations to the CDMM-F classes is shown in the Figure 3. 
 

 
Figure 3. CDMM-F and thus CDMM-Meta-Modeler root meta-model classes 

 
The Figure 3 displays the CDMM-F package structure and two following classes: 

• RootMetamodelCore that belongs to the CDMM-F - this class cannot be 
redefined by the CDMM-F and, in consequence CDMM-Meta-Modeler 
user 

• AggregationCPoliOMulti which is predefined in CDMM-F - this class can 
be redefined by the user of both CDMM-F and CDMM-Meta-Modeler 
systems or the CDMM-Meta-Modeler may be instructed to reuse one of 
user-defined relation classes to play the role of the CDMM-F framework 
class. 

The important assumption here is that there must be defined exactly one class in 
each of the RootMetamodelCoreNode and RootMetamodelCoreEdge (see the  
Figure 3) packages. These classes are dedicated for the purpose of associating me-
ta-model elements with the CDMM-F when the meta-model graph is defined in 
CDMM-Meta-Modeler. The way the graph is created from the classes presented so 
far is explained in subsection 3.6. 



150 

3.5. Profiles for Meta-Model Graph Elements Stereotyping 

The UML stereotyping mechanism is used in CDMM-Meta-Modeler for asso-
ciating meta-model entity classes to CDMM-F root class (see the Figure 2a) and 
for associating meta-model graph relationships to meta-model relationship classes 
(see the Figure 5). 

In order to introduce these stereotypes into CDMM-Meta-Modeler the UML 
extension mechanism is applied – the required stereotypes are defined through 
UML Profiles in CDMM-Meta-Modeler. 

So, the next step is to define two profiles: 
• RootMetaModelProfile 
• GeneratedProfile 

The first profile RootMetaModelProfile is defined for associating meta-model enti-
ty classes to CDMM-F root class. The second one is dedicated to associating meta-
model graph relationships to meta-model relationship classes. 

In fact, the need for user activities is very limited here, as the RootMetamod-
elProfile is predefined in the framework. However, if the user wants to exchange 
the predefined AggregationCPoliOMulti to his/her own implementation, then 
he/she must change the name of it manually. The remaining, GeneratedProfile does 
not need any user activities as this profile is generated on the fly by the CDMM-
Meta-Modeler on the basis of meta-model relation classes shown in the Figure 2b. 
The contents of both profiles for the meta-model are shown in the Figure 4a for 
RootMetaModelProfile and in the Figure 4b for GeneratedProfile. 
 

  
Figure 4. CDMM-Meta-Modeler Profiles: a) RootMetaModelProfile, b) GeneratedProfile 

 
Both profiles are used to manually stereotype entity classes when they are 

created according to subsection 3.2 and relationship classes when meta-model 
graph is created according to the subsection 3.6. 

Manual stereotyping is time consuming and error prone. That is why automa-
tion is planned to be used in future implementation of the CDMM-Meta-Modeler. 



151 

3.6. Definition of Sample Meta-Model Graph 

Now, all meta-model elements that are required for meta-model creation from 
CDMMMeta-Modeler are available. So, the only thing is to associate all of them 
into the graph structure that represents the modeling language. In order to do that 
the UML diagram (to define the meta-model graph structure) must be created and 
some meta-model elements must be stereotyped. 

The required and sufficient meta-model graph diagram created in CDMM-
Meta-Modeler for the CDMM-like representation of the sample meta-model from 
the Figure 1 is presented in the Figure 5. 

It is worth noticing in the Figure 5 that: 
• meta-model entity classes are defined to be interconnected to the root 

Root-MetamodelCore class of the CDMM-F (that is why they are dis-
played in red font on the green background according to the coloring con-
vention introduced in subsection 3.1); the only stereotype «RootMeta-
modelCore» is predefined in CDMM-MetaModeler and can be applied to 
meta-model entity classes only; 

• meta-model entity classes that can be reached from the stereotyped clas-
ses are not stereotyped (they are displayed in green); 

• for directed meta-model graph the dependency relationships can be used; 
• the meta-model graph relationships (displayed in blue according to the 

coloring convention) are associated to the meta-model relationship classes 
via stereotypes the names of which are equivalent to the meta-model rela-
tionship class names; the stereotype names for the relationships are taken 
from the GreneratedProfile UML Profile defined in CDMM-Meta-
Modeler; more relationships can be used in the meta-model graph dia-
gram - all kinds of associative relationships (composition, aggregation, 
association) especially to represent two-directional meta-model relation-
ships; 

• some relationships cannot be represented in UML as they do not exist in 
this standard’s meta-model; for example the RPair relationship does not 
exist while it is useful in meta-modeling; in consequence the lacking 
RPair relationship is modeled in the Figure 1 by two association relation-
ships with the appropriate note (in grey) connected to each pair (OCL ex-
pression can be used to define this constraint as well); however the same 
RPair relationships are modeled in CDMM-Meta-Modeler meta-model 
graph diagram as one meta-model notion - a relationship, what is visible 
in the Figure 5; dual nature of the relationship is represented by the ap-
propriate implementation of the relationship class that is associated to the 
dependency relationship via stereotype; (see for example DAssociation - 
DRole relation in both Figure 1 and Figure 5); this is one of advantages of 
open ontology based meta-modeling. Another good example is N-ary as-
sociation from UML which does not have its representation in UML me-
ta-model and can be easily introduced to the CDMM. 



152 

The entity class stereotypes can be introduced: 
• manually in the Entity package while entity classes are defined 
• manually in the meta-model graph diagram (better practice) 
• automatically for the meta-model graph elements (the best practice) 

The relation class stereotypes are generated automatically on the basis of the meta-
model relationship class names and placed in the Generated Profile. The list of 
stereotypes available for a particular relation is offered by the CDMM-Meta-
Modeler when meta-model graph diagram is created by meta-model designer. 
 

 
Figure 5. The meta-model graph structure arranged from meta-model elements 

 
In order to illustrate the diagramming functionality of the presented software 

tool the same meta-model graph created in CDMM-Meta-Modeler is shown in the 
Figure 6. This diagram does not follow the coloring convention introduced for the 
purpose of the paper. 

The whole meta-modeling process, thus the process of the design of a model-
ing language as a whole is presented in subsection 3.7. The process is general but is 
placed in the subsection 3.7 in the section 3 which is focused on the case study, as 
the discussion of the process refers to the notions connected to the case study. 



153 

3.7. Meta-Modeling Process 

One of the goals of CDMM-Meta-Modeler was to simplify the work that must 
be performed by the person who defines a modeling language. It was achieved by 
minimization of the required user activities - both number and scope. More specifi-
cally, the "convention over configuration" and automation approaches were used 
for profile definition tasks as it was already mentioned above in subsection 3.5.  
In the case of diagramming the number of elements that must be managed manual-
ly is also limited and the manual tasks are simplified. 
 

 
Figure 6. Sample meta-model graph diagram created in CDMM-Meta-Modeler 

 
The manual tasks in the final version of the CDMM-Meta-Modeler can  

be limited to: 
• defining entity classes 
• defining relationship classes 
• associating some meta-model entity classes via meta-model relationship 

classes on the meta-model graph diagram 



154 

• stereotyping all relationships on the meta-model graph diagram by the ste-
reotypes equivalent to the names of already defined (not necessarily al-
ready implemented)meta-model relation classes 

The meta-model classes mentioned above must be, of course, implemented. 
But they are subject of extensive reuse in meta-modeling, that is why defining and 
implementing them is required for the first version of the meta-model and could be 
required on the very limited extent for future versions of the meta-model. The main 
subject of introduction/change are meta-model entity classes that are very easy for 
implementation (the whole source code of these classes may be generated from 
their CDMM-Meta-Modeler definition - from the model of the meta-model stored 
in CDMMMeta-Modeler in the form of UML2 Eclipse PlugIn model representa-
tion). This model of meta-model can be thus accessed from external software 
through the UML2 Eclipse PlugIn API. This way the CDMM-Meta-Modeler has 
the open architecture. 

The steps of the process of constructing the meta-model graph shown in the 
Figure 5, as well as any other meta-model, are as follows: 

• the entity classes are created in the CDMM-Meta-Modeler 
• the relationship classes are created in the CDMM-Meta-Modeler 
• the green classes are dragged and dropped from the Entities package to 

the MetamodelGraph diagram; they represent nodes of the meta-model 
graph 

• the RootMetaModelProfile is optionally updated in case the default rela-
tion class is exchanged to the user-defined one 

• the GeneratedProfile is generated by the CDMM-Meta-Modeler 
• the dependency relationships are introduced into MetamodelGraph dia-

gram 
• the dependency relationships on the CDMM-Meta-Modeler diagram are 

stereotyped through the CDMM-Meta-Modeler Eclipse PlugIn GUI which 
offers the list of available stereotypes taken from RootMetaModelProfile 
and from GeneratedProfile 

• some nodes of the meta-model are stereotyped by the only stereotype 
available for meta-model node (entity) classes, that is by «RootMeta-
modelCore» stereotype defined in RootMetaModelProfile 

The last step is very important and crucial for CDMM-F. It introduces one 
root for the whole meta-model graph structure. This is important from the perspec-
tive of model (an instance of meta-model) exploration from the CDMM-F client 
code through the API of CDMM-F as the entry point to the API is just via the root 
class. This root is implemented in CDMM-F as the RootMetamodelCore class de-
picted in the Figure 3. This root of the meta-model is associated by CDMM-F to 
the classes stereotyped by « RootMetamodelCore ». These classes are presented in 



155 

the Figure 5. They are associated by CDMM-F to the root class in one way through 
the only class defined in RootMetamodelCoreEdge package, in our case this is the 
AggregationCPoliOMulti class, which can be exchanged by the user to a user-
defined class. The assumption of the uniqueness of this class does not introduce 
any limits to the approach. Associating the meta-model entity classes to the root 
element is a meta-model design decision that should be made by the user of 
CDMM-Meta-Modeler. The existence of the root element eliminates the problem 
of creation of multi root graph and non compact graph. Otherwise not only the 
implementation of the client will be complicated but also application of graph pat-
tern recognition methods will be limited, especially if graph syntactical methods 
are applied. The whole process of meta-modeling in CDMM-Meta-Modeler de-
scribed above is presented in the Figure 7. 

The dependency relationships are unidirectional. They were introduced to the 
example as they are sufficient for the presented meta-model (all relationships are 
unidirectional in it). This simplification was introduced intentionally into the cas-
estudy just to limit the complexity. In fact the CDMM-Meta-Modeler makes it 
possible to associate stereotypes with all kinds of associative relations. In order to 
introduce a two-directional relationship the GeneratedProfile must be extended. 
Also more complex UML relationships may be introduced to the meta-model 
graph. For example the relationship that may join more than one (including also 
the transitive case of the binary relationship) or two node classes (N-ary associa-
tion) may be introduced. 

Cooperation between CDMM-Meta-Modeler and CDMM-F can be achieved 
in the following two ways: off-line cooperation via files sharing or on-line coopera-
tion through CDMM-F API. 

The first way is possible but not convenient enough as the CDMM-Meta-
Modeler must find the right directories that contain source code files for CDMM-F 
specific classes as well as user-defined entity and relation classes. The right loca-
tions of the classes are pointed by CDMM-Meta-Modeler configuration file.  
In such the case the CDMM-Meta-Modeler is able to generate the following files 
on the output: 

• GRP file in the XML format with the minimal graph structure that repre-
sents meta-model; this file can be interpreted by CDMM-F and trans-
formed at the start to the Spring context-file which is then loaded by 
CDMM-F at run-time to initiate the framework correctly 

• CTX file in the XML format which is the application context file for 
CDMM-F; the CDMM-F loads this file at the start 

Another disadvantages of this off-line cooperation is that the meta-modeling pro-
cess is not dynamic enough and changes introduced into meta-model through 
CDMMMeta-Modeler are not reflected automatically in the CDMM-F. 



156 

That is why the on-line cooperation is promoted. In this case not only 
CDMMMeta-Modeler but also CDMM-F have the form of Eclipse PlugIns and can 
exchange data through their APIs. In this case the application context file is passed 
from CDMM-Meta-Modeler to CDMM-F in the form of the string. Moreover, this 
way of cooperation is better from the perspective of automatic testing of the im-
plementation of entity and relation classes of the meta-model (unit testing of the 
meta-model) and the correctness of their association to the CDMM-F (integration 
testing of the meta-model). 

 

 
Figure 7. Business process of meta-modeling in CDMM-Meta-Modeler focused on the 
meta-model designer tasks supported continuously by the CDMM-Meta-Modeler tool 

4. Conclusion 

This paper focuses on the case study that illustrates how to construct a model-
ing language (a meta-model) in CDMM-Meta-Modeler software tool. It also shows 
how lightweight and convenient such a process is. This case study can be also a 
good reference for studying the nature of CDMM-F framework. The framework is 
an implementation of CDMM-P paradigm. So, the case study shows how this para-
digm can be applied for meta-modeling. The construction of modeling languages is 
one of application fields of the CDMM-P. Thus, the clear explanation of meta-
modeling process and its specifics can help to understand better the nature of open 
ontology based meta-modeling and then to apply the paradigm to construction of 



157 

applications data layer, which is even more common problem, but located out of 
the current scope of the research. The case-study plays the role of the proof-of-the-
concept for the idea of CDMM materialized in the form of CDMM-P and  
CDMM-F. All features of the CDMM-Meta-Modeler mentioned in the paper as 
planned for future work are intended to be implemented. Some of them require 
theoretical research before implementation. 

REFERENCES 

[1] Aßmann U., Zschaler S., Wagner G. (2006) Ontologies, meta-models, and the model-
driven paradigm. In C Calero, F Ruiz, and M Piattini, editors, Ontologies for Soft-
ware Engineering and Software Technology, 249–273, Springer. 

[2] Booch G., Rumbaugh J., Jacobson I (2005) The Unified Modeling Language User 
Guide. Addison-Wesley. 

[3] Calero C., Ruiz F., Piattini M. (2006) Ontologies for Software Engineering and Soft-
ware Technology. Springer. 

[4] Djurić D., Devedžić V. (2010) Magic Potion: Incorporating New Development Para-
digms through Meta-Programming. IEEE Softw., 27 (5): 38–44. 

[5] Djurić D., Jovanović J., Devedžić V., Šendelj R. (2010) Modeling Ontologies as Exe-
cutable Domain Specific Languages. presented at the 3rd Indian Software Eng. Conf. 

[6] Falbo R., Guizzardi G., Duarte K. (2002) An ontological approach to domain engi-
neering. In Procs. 14th Int. Conf. on Software Eng. and Knowledge Eng. (SEKE). 

[7] Fitrzyk G. (2014) D-MMF Modeling Tool Based on Eclipse RCP. MSc. thesis, Cra-
cow University of Technology. 

[8] Gašević D., Djurić D., Devedžić V. (2009) Model Driven Engineering and Ontology 
Development. Springer-Verlag. 

[9] Gašević D., Kaviani K., Milanović M. (2009) Ontologies, software engineering.  
In Handbook on Ontologies. Springer-Verlag. 

[10] Gallardo J., Molina A., Bravo C., Redondo M., Collazos C. (2011) An ontological 
conceptualization approach for awareness in domain-independent collaborative mod-
eling systems: Application to a model-driven development method. Expert Systems 
with Applications, 38: 1099–1118. 

[11] Goczyła K. (2011) Ontologies in Information Systems (in Polish). Akademicka Ofi-
cyna Wydawnicza EXIT. 

[12] Object Management Group (2015) Meta object facility (mof) core specification ver-
sion 2.0. URL: http://www.omg.org/spec/MOF/2.0 

[13] Object Management Group (2015) Unified modeling language (uml) superstructure 
version 2.2. URL: http://www.omg.org/spec/UML/2.2 

[14] Guizzardi G. (2005) Ontological foundations for structural conceptual models. 
Telematica Instituut Fundamental Research Series, 15. 



158 

[15] Guizzardi G. (2007) On ontology, ontologies, conceptualizations, modeling lan-
guages, and (meta)models. In Frontiers in Artificial Intelligence and Applications 
Volume 155, pages 18–39, Amsterdam. Conference on Databases and Information 
Systems IV, IOS Press. Selected Papers from the Seventh International Baltic Confer-
ence DB and IS 2006. 

[16] Holanda O., Isotani S., Bittencourt I., Elias E, Tenório T. (2013) Joint: Java ontology 
integrated toolkit. Expert Systems with Applications, 40: 6469–6477. 

[17] Javed F., Mernik M., Gray J., Bryant B. (2008) Mars: A meta-model recovery system 
using grammar inference. Information and Software Technology, 50: 948–968. 

[18] Kern H., Kühne S. (2007) Model interchange between aris and eclipse emf. In 7th 
OOPSLA Workshop on Domain-Specific Modeling, Montreal. 

[19] Krahn H., Rumpe B., Völkel S. (2007) Efficient editor generation for compositional 
dsls in eclipse. In Proceedings of the 7th OOPSLA Workshop on Domain-Specific 
Modeling DSM’ 07, Jyväskylä University, Jyväskylä, 2007. Technical Report TR-38. 

[20] Kalnins A., Vilitis O., Celms E., Kalnina E., Sostaks A., Barzdins J. (2007) Building 
tools by model transformations in eclipse. In Proceedings of DSM 2007 workshop of 
OOPSLA 2007, pages 194–207, Montreal, University Printing House. 

[21] Kleppe A.G., Warmer J., Bast W. (2003) MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston. 

[22] Malhotra R. (2008) Meta-modeling framework: A new approach to manage meta-
model base and modeling knowledge. Knowledge-Based Systems, 21:6–37. 

[23] Peng X., Zhao W., Xue Y., Wu Y. (2006) Ontology-based feature modeling and ap-
plication-oriented tailoring. In Reuse of Off-the-Shelf Components, pages 87–100. 
Springer-Verlag, New York. 

[24] Reinhartz-Berger I. (2010) Towards automatization of domain modeling. Data and 
Knowledge Engineering, 69: 491–515. 

[25] Sprinkle J., Mernik M., Tolvanen J.-P., Spinellis D. (2009) What kinds of nails need a 
domain-specific hammer? IEEE Software, 26: 15–18. Guest Editors’ Introduction: 
Domain Specific Modelling. 

[26] Silingas D., Vitiutinas R., Armonas A., Nemuraite L. (2009) Domain-specific model-
ing environment based on uml profiles. In Information Technologies 2009: Proceed-
ings of the 15th Conference on Information and Software Technologies, IT 2009, 
pages 167–177, Kaunas. Kaunas University of Technology. 

[27] Zabawa P. (2015) Context-Driven Meta-Modeling Framework (CDMM-F) - Context 
Role. Technical Transactions of Cracow University of Technology, 112 (1-NP):  
105-114. 

[28] Zabawa P., Fitrzyk G. (2015) Eclipse Modeling Plugin for Context-Driven Meta-
Modeling (CDMM-Meta-Modeler). Technical Transactions of Cracow University of 
Technology, 112 (1-NP): 115-125. 

[29] Zabawa P., Stanuszek M. (2014) Characteristics of the Context-Driven Meta-
Modeling Paradigm (CDMM-P). Technical Transactions of Cracow University of 
Technology, 111 (3-NP): 123–134. 


