Prof. dr hab. inż. Leszek MIESZKALSKI Katedra Organizacji i Inżynierii Produkcji, SGGW w Warszawie

# MATEMATYCZNE MODELOWANIE KSZTAŁTU CYTRYN®

Mathematical modeling of shape lemons®

**Słowa kluczowe**: cytryna, kształt, krzywe Béziera, metoda, model matematyczny.

W artykule przedstawiono propozycję metody matematycznego modelowania kształtu cytryn z wykorzystaniem krzywych Béziera. Kontur cytryny leżący na jej południku opisano trzema połączonymi krzywymi Béziera. Podstawą do opisu konturów były fotografie 10 położeń cytryny obracanej co 36° względem jej naturalnej osi symetrii. Rozmieszczone wzdłuż południków cytryny krzywe Béziera są jej modelem 3D.

## **WSTĘP**

Cytryny cieszą się dużą popularnością na całym świecie ze względu na ich wyjątkowy smak i kwasowość, a także możliwości zastosowania w przemyśle spożywczym [5, 11]. Są wartościowe pod względem odżywczym, leczniczym, zawierają witaminę C, B, ryboflawinę, wapń, fosfor, magnez, białko i węglowodany. Cytryny zmniejszają ryzyko chorób serca, nowotworów, a także działają jako środek antyseptyczny, ściągający, pobudzający [4].

Rashidi i Keshavarzpour [12] zastosowali do przewidywania masy owoców cytrusowych (mandarynki) liniowe modele regresji uwzględniające podstawowe właściwości geometryczne takie jak długość i średnią geometryczną średnicę. Objętość szacowali na podstawie dopasowanej do owocu spłaszczonej elipsoidy obrotowej. Mimo zapewnień Autorów, że kształt, masa i objętość mogą być opisywane liniowymi modelami regresji, to jednak spłaszczona elipsoida nie aproksymuje dokładnie kształtu owocu. Gabriele [3] oraz Rashidi i Seyfi [17], a także Rashidi i Gholami [13], Rashidi i Keshavarzpour [12] na podstawie badań takich owoców jak kantalupa, kiwi, mandarynka stwierdzili, że wielkość owocu jest jednym z ważniejszych parametrów jakości oceny preferencji przez konsumentów. Masa owocu jest podstawowym parametrem w procesie sortowania [1, 8], pakowania i transportu [18, 19]. Khanali i in. [6], Rashidi i Seyfi [16], Rashidi i Gholami [14, 15], Taheri-Garavand i Nassiri [21] są zdania, że masa owocu może być w prosty sposób określona na podstawie właściwości geometrycznych. Baradaran i in. [2] określili model regresji masy cytryny na podstawie jej rzeczywistej objętości, która została obliczona przy założeniu, że kształt cytryny jest zbliżony do elipsoidy obrotowej wydłużonej. Lino i współpracownicy [10] zaproponowali, żeby darmowy program (Image J) do analizy obrazu wykorzystać do sortowania cytryn i pomidorów jako alternatywę drogich systemów stosowanych podczas sortowania owoców. Khojastehnazhand i inni [7] uważają, że w systemach dokładnej Key words: lemon, shape, Bézier curves, method, mathematical model.

The article proposes the method of mathematical modeling of the shape of the lemons behind using Bezier curves. Outline lemon lying on the meridian described three connected Bezier curves. The basis for the description of contours is photos of 10 positions lemon rotated at 36° relative to its natural axis of symmetry. 3D model are the arranged along the meridians lemon Bézier curve.

klasyfikacji i sortowania owoców cytrusowych podstawowymi parametrami identyfikacji są wielkość, kolor, kształt i wady zewnętrzne. Strother i inni 2015 [20] twierdzą, że promienie krzywizny dają informacje o kształcie obiektu jakim może być cytryna. Lalitha i współautorzy [9] zaproponowali system analizy obrazu do wykrywania chorób cytryn polegający na wykrywaniu krawędzi w celu wyodrębniania regionu, w którym rozwija się choroba.

## MATERIAŁ I METODY

Materiałem do badań była cytryna odmiany Lisbon pochodząca z Portugalii. Po zakupie cytryn, w hurtowni w Broniszach, były one przechowywane w pomieszczeniu o stałej temperaturze 19°C i wilgotności powietrza 60%. Ze złoża 50 cytryn, do modelowania wybrano cytrynę nie uszkodzoną o kształcie i średnich wymiarach charakterystycznych dla tej odmiany.



Rys. 1. Stanowisko badawcze.Fig. 1. Research position.Źródło: Materiały własneSource: Own study

Adres do korespondencji – Corresponding author: Leszek Mieszkalski, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Wydział Inżynierii Produkcji, Katedra Organizacji i Inżynierii Produkcji, ul. Nowoursynowska 164, 02-787 Warszawa, e-mail: mieszko@poczta.fm

#### INŻYNIERIA ŻYWNOŚCI



**Rys. 2.** Cytryna odmiany Lisbon w 10 polożeniach. Fig. 2. Lemon varieties of Lisbon in 10 positions.

Source: Own study

Cytrynę umieszczono na stanowisku (rys.1) w celu wykonania fotografii dla 10 położeń uzyskanych przez jej obrót co 36° (rys. 2). Fotografię wykonano aparatem Panasonic LUMIX DMC–TZ3. Odległość obiektywu od fotografowanego obiektu była stała i wynosiła 400 mm. Zdjęcia o wymiarach 2560x1712 pikseli zapisywano w formacie JPEG. Podstawowe wymiary cytryny (długość, średnica) pokazane na rysunku 3 zmierzono suwmiarką z dokładnością do 0,1 mm.



- Rys. 3. Podstawowe wymiary cytryny odmiany Lisbon wybranej do modelowania oraz oznaczenia punktów węzłowych i kontrolnych trzech połączonych krzywych Béziera opisujących kontur cytryny.
- Fig. 3. Basic dimensions of the Lisbon lemon varieties selected for modeling and markings nodal key points and control three connected Bé zier curves describing the outline of lemon.
- Źródło: Materiały własne
- Source: Own study

Po wykadrowaniu i wyskalowaniu fotografii cytryny, umieszczonej w układzie współrzędnych, dopasowywano do jej konturów trzy połączone krzywe Béziera (rys. 3). Początek układu współrzędnych leżał na naturalnej osi symetrii cytryny, a oś x-ów była styczna do dolnej części owocu.

## MODEL KSZTAŁTU KONTURÓW BRYŁY CYTRYNY REPREZENTOWANY KRZYWYMI BÉZIERA

Wielomiany krzywych Beziera dla współrzędnych *x, y, z* z uwzględnieniem funkcji bazowych (wielomianów Bernsteina) są zamieszczone niżej:

$$P(t)x = \sum_{i=0}^{n} Px_i \cdot {\binom{n}{i}} \cdot (1-t)^{n-i} \cdot t^i$$
(1)

$$P(t)y = \sum_{i=0}^{n} Py_i \cdot {\binom{n}{i}} \cdot (1-t)^{n-i} \cdot t^i$$
(2)

$$P(t)z = \sum_{i=0}^{n} P_{z_i} \cdot {\binom{n}{i}} \cdot (1-t)^{n-i} \cdot t^i$$
(3)

Algebraiczna postać równań współrzędnych krzywych Béziera stosowanych do opisu konturów cytryny:

$$x(t) = P1x \cdot (1-t)^3 + 3 \cdot P2x \cdot (1-t)^2 \cdot t \cdot \cos(\alpha) +$$
  

$$3 \cdot P3x \cdot (1-t) \cdot t^2 \cdot \cos(\alpha) + P4x \cdot t^3 \cdot \cos(\alpha)$$
(4)

$$y(t) = P1y \cdot (1-t)^3 + 3 \cdot P2y \cdot (1-t)^2 \cdot t \cdot \sin(\alpha) +$$
  

$$3 \cdot P3y \cdot (1-t) \cdot t^2 \cdot \sin(\alpha) + P4y \cdot t^3 \cdot \sin(\alpha)$$
(5)

$$z(t) = P1z \cdot (1-t)^3 + 3 \cdot P2z \cdot (1-t)^2 \cdot t + 3 \cdot P3z \cdot (1-t) \cdot t^2 + P4z \cdot t^3$$
(6)

Przykładowe równia krzywej Béziera dla środkowej części konturu cytryny są następujące:

$$xBn_{t} = ABnx \cdot \left[1 - \frac{t}{N}\right]^{3} + Bnx \cdot \cos\left(\frac{\alpha n \cdot \pi}{180}\right) \cdot 3\frac{t}{N} \cdot \left[1 - \frac{t}{N}\right]^{2} + BBnx \cdot \cos\left(\frac{\alpha n \cdot \pi}{180}\right) \cdot 3 \cdot \left[\frac{t}{N}\right]^{2} \cdot \left[1 - \frac{t}{N}\right] + BCnx \cdot \cos\left(\frac{\alpha n \cdot \pi}{180}\right) \cdot \left[\frac{t}{N}\right]^{3}$$
(7)

Źródło: Materiały własne

$$yBn_{t} = ABny \cdot \left[1 - \frac{t}{N}\right]^{3} + Bny \cdot sin\left(\frac{\alpha n \cdot \pi}{180}\right) \cdot 3\frac{t}{N} \cdot \left[1 - \frac{t}{N}\right]^{2} + BBny \cdot sin\left(\frac{\alpha n \cdot \pi}{180}\right) \cdot 3 \cdot \left[\frac{t}{N}\right]^{2} \cdot \left[1 - \frac{t}{N}\right] + BCny \cdot sin\left(\frac{\alpha n \cdot \pi}{180}\right) \cdot \left[\frac{t}{N}\right]^{3}$$
(8)

$$zBn_{t} = ABnz \cdot \left[1 - \frac{t}{N}\right]^{3} + Bnz \cdot 3\frac{t}{N} \cdot \left[1 - \frac{t}{N}\right]^{2} + BBnz \cdot 3 \cdot \left[\frac{t}{N}\right]^{2} \cdot \left[1 - \frac{t}{N}\right] + BCnz \cdot \left[\frac{t}{N}\right]^{3}$$
(9)

Dla *N*=20, *t*=0...*N*, *n* – numer krzywej Béziera, *n*=1, 2, 3, ..., 11. *αn* = 0°, 36°, ..., 360°.

Podobne równania zastosowano do opisu górnej i dolnej części konturu cytryny. Krzywą Béziera opisującą górną część *A* cytryny połączono w punkcie *ABn*, a krzywą Béziera opisującą środkową część *B* cytryny, połączono w punkcie *BCn z* krzywą Béziera opisującą dolną część C cytryny. Trzy krzywe Béziera połączono w punktach węzłowych *ABn* i *BCn z* zachowaniem zasady gładkości połączenia, spełniając warunek, aby punkty kontrolne *AAn* i *Bn* oraz *BBn* i *CCn* łączonych krzywych leżały na wspólnej prostej. Na podstawie równań od 7 do 9 zbudowano 30 połączonych krzywych Béziera leżących wzdłuż południków cytryny, tworząc jej model 3*D*.

## WYNIKI WSPÓŁRZĘDNYCH PUNKTÓW WĘZŁOWYCH I KONTROLNYCH KRZYWYCH BÉZIERA ORAZ UZYSKANE MODELE KSZTAŁTU CYTRYN

Współrzędne punktów węzłowych i kontrolnych połączonych krzywych Béziera będących konturami (południkami) cytryny odmiany Lisbon, zamieszczono w macierzach. Współrzędne punktów węzłowych wspólnych dla krzywych Béziera będących biegunami, przez które przechodzi naturalna oś symetrii cytryny zamieszczono w macierzy:

$$\begin{pmatrix} Ax & Ay & Az \\ Cx & Cy & Cz \end{pmatrix} := \begin{pmatrix} 0 & 0 & 83 \\ 0 & 0 & 0 \end{pmatrix}$$
(10)

#### Współrzędne węzłów łączących krzywe Béziera:

| AB1x  | AB1y  | AB1z  | BC1x  | BC1y  | BC1z   |    | (-21.5 | -21.5 | 73 | -20.7 | -20.7 | 4  |      |
|-------|-------|-------|-------|-------|--------|----|--------|-------|----|-------|-------|----|------|
| AB2x  | AB2y  | AB2z  | BC2x  | BC2y  | BC2z   |    | -19.5  | -19.5 | 73 | -17.6 | -17.6 | 4  |      |
| AB3x  | AB3y  | AB3z  | BC3x  | BC3y  | BC3z   |    | -20.3  | -20.3 | 73 | -19.1 | -19.1 | 4  |      |
| AB4x  | AB4y  | AB4z  | BC4x  | BC4y  | BC4z   |    | -20    | -20   | 73 | -18   | -18   | 4  |      |
| AB5x  | AB5y  | AB5z  | BC5x  | BC5y  | BC5z   |    | -22.5  | -22.5 | 73 | -21   | -21   | 4  |      |
| AB6x  | AB6y  | AB6z  | BC6x  | BC6y  | BC6z   | := | 21     | 21    | 73 | 15.6  | 15.6  | 4  | (11) |
| AB7x  | AB7y  | AB7z  | BC7x  | BC7y  | BC7z   |    | 21     | 21    | 73 | 18    | 18    | 4  |      |
| AB8x  | AB8y  | AB8z  | BC8x  | BC8y  | BC8z   |    | 20     | 20    | 73 | 18    | 18    | 4  |      |
| AB9x  | AB9y  | AB9z  | BC9x  | BC9y  | BC9z   |    | 17.6   | 17.6  | 73 | 18.6  | 18.6  | 4  |      |
| AB10x | AB10y | AB10z | BC10x | BC10y | BC10z  |    | 19     | 19    | 73 | 18.4  | 18.4  | 4  |      |
| AB11x | AB11y | AB11z | BC11x | BC11y | BC11z) |    | -21.5  | -21.5 | 73 | -20.7 | -20.7 | 4) |      |

Współrzędne punktów kontrolnych krzywej Béziera A:

| A1x  | Aly  | A1z  | AA1x  | AA1y  | AA1z  |    | (-9.5 | -9.5 | 83   | -10.9 | -10.9 | 76.1 |      |
|------|------|------|-------|-------|-------|----|-------|------|------|-------|-------|------|------|
| A2x  | A2y  | A2z  | AA2x  | AA2y  | AA2z  |    | -7.7  | -7.7 | 80.2 | -11.1 | -11.1 | 78.7 |      |
| A3x  | A3y  | A3z  | AA3x  | AA3y  | AA3z  |    | -8.1  | -8.1 | 80.2 | -10.9 | -10.9 | 78.3 |      |
| A4x  | A4y  | A4z  | AA4x  | AA4y  | AA4z  |    | -5    | -5   | 81.7 | -6.8  | -6.8  | 78.4 |      |
| A5x  | A5y  | A5z  | AA5x  | AA5y  | AA5z  |    | -5.1  | -5.1 | 83.1 | -9.2  | -9.2  | 79.7 |      |
| A6x  | A6y  | A6z  | AA6x  | AA6y  | AA6z  | := | 5.3   | 5.3  | 82.8 | 13.8  | 13.8  | 76.7 | (12) |
| A7x  | A7y  | A7z  | AA7x  | AA7y  | AA7z  |    | 5.4   | 5.4  | 83.4 | 9.5   | 9.5   | 76.8 |      |
| A8x  | A8y  | A8z  | AA8x  | AA8y  | AA8z  |    | 5.3   | 5.3  | 83.5 | 8.5   | 8.5   | 76.6 |      |
| A9x  | A9y  | A9z  | AA9x  | AA9y  | AA9z  |    | 5.4   | 5.4  | 83.9 | 1.1   | 1.1   | 80.8 |      |
| A10x | A10y | A10z | AA10x | AA10y | AA10z |    | 5.9   | 5.9  | 83.8 | 3.4   | 3.4   | 80.2 |      |
| A11x | Ally | A11z | AA11x | AA11y | AA11z |    | (-9.5 | -9.5 | 83   | -10.9 | -10.9 | 76.1 |      |

Współrzędne punktów kontrolnych krzywej Béziera B:

| ſ | B1x  | B1y  | B1z  | BB1x  | BB1y  | BB1z   | ١  | (-39.5 | -39.5 | 55.1 | -41   | -41   | 20   |      |
|---|------|------|------|-------|-------|--------|----|--------|-------|------|-------|-------|------|------|
|   | B2x  | B2y  | B2z  | BB2x  | BB2y  | BB2z   |    | -37.7  | -37.7 | 54.9 | -38.5 | -38.5 | 19.2 |      |
|   | B3x  | B3y  | B3z  | BB3x  | BB3y  | BB3z   |    | -39.4  | -39.4 | 60.8 | -39.4 | -39.4 | 19.1 |      |
|   | B4x  | B4y  | B4z  | BB4x  | BB4y  | BB4z   |    | -38    | -38   | 61.5 | -39.1 | -39.1 | 19.3 |      |
|   | B5x  | B5y  | B5z  | BB5x  | BB5y  | BB5z   |    | -40.2  | -40.2 | 61.6 | -43.7 | -43.7 | 18.7 |      |
|   | B6x  | B6y  | B6z  | BB6x  | BB6y  | BB6z   | := | 34.1   | 34.1  | 67.8 | 43    | 43    | 21.3 | (13) |
|   | B7x  | B7y  | B7z  | BB7x  | BB7y  | BB7z   |    | 28.6   | 28.6  | 70.9 | 51.7  | 51.7  | 24.5 | (15) |
|   | B8x  | B8y  | B8z  | BB8x  | BB8y  | BB8z   |    | 33.9   | 33.9  | 65.7 | 42.3  | 42.3  | 20.2 |      |
|   | B9x  | B9y  | B9z  | BB9x  | BB9y  | BB9z   |    | 39.8   | 39.8  | 63.1 | 40.8  | 40.8  | 17.1 |      |
|   | B10x | B10y | B10z | BB10x | BB10y | BB10z  |    | 38.2   | 38.2  | 65.9 | 40.7  | 40.7  | 17.2 |      |
| ł | B11x | B11y | B11z | BB11x | BB11y | BB11z) | )  | -39.5  | -39.5 | 55.1 | -41   | -41   | 20 ) |      |

Współrzędne punktów kontrolnych krzywej Béziera C:

|      | 1.3  | -10.3 | -10.3 | 1    | -17.4 | (-17.4 | )  | Clz   | Cly  | C1x  | CC1z  | CC1y  | CC1x  |
|------|------|-------|-------|------|-------|--------|----|-------|------|------|-------|-------|-------|
|      | 1.6  | -10.4 | -10.4 | 1.1  | -14.6 | -14.6  |    | C2z   | C2y  | C2x  | CC2z  | CC2y  | CC2x  |
|      | 1.8  | -10.5 | -10.5 | 0.8  | -15.2 | -15.2  |    | C3z   | C3y  | C3x  | CC3z  | CC3y  | CC3x  |
|      | 0.3  | -10   | -10   | 1.1  | -14.7 | -14.7  |    | C4z   | C4y  | C4x  | CC4z  | CC4y  | CC4x  |
|      | 0.6  | -9.8  | -9.8  | 1    | -17.4 | -17.4  |    | C5z   | C5y  | C5x  | CC5z  | CC5y  | CC5x  |
| (14) | 1.6  | 8.6   | 8.6   | -1.2 | 8.5   | 8.5    | := | C6z   | C6y  | C6x  | CC6z  | CC6y  | CC6x  |
| (14) | 1.8  | 8.6   | 8.6   | 0.1  | 9.9   | 9.9    |    | C7z   | C7y  | C7x  | CC7z  | CC7y  | CC7x  |
|      | 1.4  | 8.6   | 8.6   | 0.4  | 9.8   | 9.8    |    | C8z   | C8y  | C8x  | CC8z  | CC8y  | CC8x  |
|      | 1    | 8.5   | 8.5   | 0.2  | 9.8   | 9.8    |    | C9z   | C9y  | C9x  | CC9z  | CC9y  | CC9x  |
|      | 1.2  | 8.6   | 8.6   | 0.2  | 9.8   | 9.8    |    | C10z  | C10y | C10x | CC10z | CC10y | CC10x |
|      | 1.3) | -10.3 | -10.3 | 1    | -17.4 | (-17.4 | )  | Cllz) | C11y | C11x | CC11z | CC11y | CC11x |

Kąty rozmieszczenia południków zamieszczono w wektorze:

| (α1) | 1  | ( 0.01 |
|------|----|--------|
| α2   |    | 36     |
| α3   |    | 72     |
| α4   |    | 108    |
| α5   |    | 144    |
| α6   | := | 0      |
| α7   |    | 36     |
| α8   |    | 72     |
| α9   |    | 108    |
| α10  |    | 144    |
| a11  | ļ  |        |

Model 3D kształtu cytryny odmiany Lisbon zamieszczono na rysunku 4.

## PORÓWNANIE MODELU Z CYTRYNĄ

W celu porównania modelu z cytryną na rysunku 5 zamieszczono nałożone na siebie wybrany rzut modelu z odpowiadającym rzutem cytryny.



Rys. 4. Model 3D cytryny w postaci wykresów powierzchniowego, punktowego i z naniesionym kolorem (R 236, G 224, B 9).

- Fig. 4. 3D model of lemon in the form of graphs of surface, point and bearing the color (R 236, G 224, B 9).
- Źródło: Materiały własne

Source: Own study



- Rys. 5. Porównanie nałożonych na siebie wybranych rzutów modelu i cytryny odmiany Lisbon.
- Fig. 5. Comparison of superimposed shots of selected model and lemon variations Lisbon.
- Źródło: Materiały własne

Source: Own study

Z rysunku 5 wynika, że dopasowanie do cytryny jej modelu jest dokładne choć występują niewielkie niedokładności lokalne.

## PODSUMOWANIE

Proponowana metoda z wykorzystaniem krzywych Béziera może być stosowana do matematycznego modelowania kształtu cytryn odmiany Lisbon i odmian podobnych pod względem kształtu. Dokładność dopasowania modelu do cytryny jest duża, z małymi odchyleniami lokalnymi. Krzywe Béziera rozmieszczone wzdłuż południków cytryny mogą być jej modelem 3D.

Ponadto powyższa metoda może być wykorzystana przy sortowaniu oraz projektowaniu opakowań do cytryn.

#### LITERATURA

 BAHNASAWY A. H., Z. A. EL-HADDAD, M. Y. EL-ANSARY, H. M. SOROUR. 2004. "Physical and mechanical properties of some Egyptian onion varieties". Journal of Food Engineering 62: 255-261.

- [2] BARADARAN M. J., A. S. H. MIRAEI, M. H. AB-BASPOUR-FARD, B. EMADI. 2014. "Modelowanie fizyczne właściwości owoców cytryny do separacji i klasyfikacji". International Food ResearchJournal 21 (5): 1901/09, Dz stronę: http://www.ifrj.upm.edu.my.
- [3] GABRIELE L. 2007. Egzotyczne owoce i warzywa w kuchni. Warszawa: Multico. ISBN 978-83-7073-506-7.
- [4] HRISHIKESH-TAVANANDI A., S. DEEPAK, K. VENKATESHMURTHY, K. S. M. S. RAGHA-VARAO. 2013. "Development of a lemon cutting machine". Journal of Food Science and Technology: DOI: 10.1007/s13197-012-0908-4.
- [5] IGLESIAS D. J., M. CERCÓS, J. M. COLMENE-RO-FLORES, M. A. NARANJO, G. RÍOS, E. CAR-RERA, O. RUIZ-RIVERO, I. LLISO, R. MORIL-LON, F. R. TADEO, M. TALON. 2007. "Physiology of citrus fruiting". Brazilian Journal of Plant Physiology 19(4): 333-362.
- [6] KHANALI M., M. GHASEMI-VARNAMKHASTI, A. TABATABAEEFAR, H. MOBLI. 2007. "Mass and volume modeling of tangerine (Citrus reticulate) fruit with some physical attributes". International Agrophysics 21: 329-334.
- [7] KHOJASTEHNAZHAND M., M. OMID, A. TABA-TABAEEFAR. 2010. "Development of a lemon sorting system based on color and size". African Journal of Plant Science Vol. 4(4): 122-127, Available online at http://www.academicjournals.org/ajps.
- [8] KHOSHNAM F., A. TABATABAEEFAR, M. GHASEMI-VARNAMKHASTI, A. BORGHEI. 2007. "Mass modeling of pomegranate (Punicagranatum L.) fruit with some physical characteristics". ScientiaHorticulturae 114: 21-26.
- [9] LALITHA K., K. MUTHULAKSHMI, A. VI-NOTHINI. 2015. "Proficient acquaintance based system for citrus leaf disease recognition and categorization". International Journal of Computer Science and Information Technologies, Vol. 6 (3): 2519-2524.

- [10] LINO A. C. L., J. SANCHES, I. M. D. FABBRO. 2008. "Image processing techniques for lemons and tomatoes classification". Bragantia, Campinas, V.67, N.3:785-789.
- [11] PEREZ-PEREZ J. G., I. PORRAS CASTILLO, A. GARCIA-LIDON, P. BOTIA, F. GARCIA-SAN-CHEZ. 2005. "Fino lemon clones compared with the lemon varieties Eureka and Lisbon on two rootstocks in Murcia (Spain)". Scientia Horticulturae 106: 530-538.
- [12] RASHIDI M., F. KESHAVARZPOUR. 2012. "Modeling of Tangerine Mass Based on Geometrical Properties". World Applied Sciences Journal 16 (5): 740-743.
- [13] RASHIDI M., M. GHOLAMI. 2008. "Classification of fruit shape in kiwifruit using the analysis of geometrical attributes". American-Eurasian J. Agric. and Environ. Sci. 3: 258-263.
- [14] RASHIDI M., M. GHOLAMI. 2011a. "Modeling of apricot mass based on some geometrical attributes". Middle-East J. Scientific Res. 7: 959-963.
- [15] RASHIDI M., M. GHOLAMI. 2011b. "Modeling of nectarine mass based on some geometrical properties". American-Eurasian J. Agric. and Environ. Sci. 10: 621-625.
- [16] RASHIDI M., K. SEYFI. 2008. "Modeling of kiwifruit mass based on outer dimensions and projected areas". American-Eurasian J. Agric. and Environ. Sci. 3: 14-17.

- [17] RASHIDI M., K. SEYFI. 2007. "Classification of fruit shape in cantaloupe using the analysis of geometrical attributes". World Applied Sciences Journal 3: 735-740.
- [18] SEYEDABADI E., M. KHOJASTEHPOUR, H. SA-DRNIA, M. H. SAIEDIRAD. 2011. "Mass modeling of cantaloupe based on geometric attributes: A case study for Tile Magasi and Tile Shahri". Scientia Horticulturae 130: 54-59.
- [19] **SHAHBAZI F., S. RAHMATI. 2013.** "Mass modeling of sweet cherry (Prunusavium L.) fruit with some physical characteristics". Food and Nutrition Sciences 4: 1-5.
- [20] STROTHER L., K. W. KILLEBREW, G. P. CA-PLOVITZ. 2015. "The lemon illusion: seeing curvature where there is none". Front. Hum. Neurosci., Vol. 9, Article 95: 1-7, http://dx.doi.org/10.3389/ fnhum.2015.00095.
- [21] TAHERI-GARAVAND A., A. NASSIRI. 2010. "Study on some morphological and physical characteristics of sweet lemon used in mass models". International J. Environ. Sci. 1: 580-590.