PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of the deterministic and stochastic Markovian model of a dendritic neuron

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we propose a model of the dendritic structure of the neuron (referred to as a neural network – NN), which can be viewed as an extension of the models that are currently used in the description of the potential on the neuron's membrane. The proposed extensions augment the generic model and offer a fuller description of the neuron's nature. The common assumption being used in most of the previous models stating a single channel (forming component of the neuron's membrane) can be positioned in only one of the two states (permissive – open and non-permissive – closed), is now relaxed by allowing the channel to be positioned in more states (five or eight states). The relationship between these states is expressed in terms of Markov kinetic schemes. In the paper, we demonstrate that the new approach is more suitable for a larger number of applications than the conventional Hodgkin–Huxley model. The study, by providing the mathematical background of the new extended model, forms a significant step towards a hardware implementation of the biologically realistic neural network (NN) of this type. To reduce the number of components required in such implementation, we propose a new optimization technique that significantly reduces the computational complexity of a single neuron.
Twórcy
  • Poznan University of Technology, Department of Computer Science, ul. Piotrowo 3A, 60-965 Poznań, Poland
autor
  • Poznan University of Technology, Department of Computer Science, ul. Piotrowo 3A, 60-965 Poznań, Poland
autor
  • University of Alberta, Department of Electrical and Computer Engineering, Edmonton, Alberta, Canada; Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
autor
  • Poznan University of Technology, Department of Computer Science, ul. Piotrowo 3A, 60-965 Poznań, Poland
Bibliografia
  • [1] Bhuiyan MA, Pallipuram VK, Smith MC. Acceleration of spiking neural networks in emerging multi-core and GPU architectures. 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW). 2010. pp. 1–8.
  • [2] Bower JM, Beeman D. The book of GENESIS, exploring realistic neural models with the GEneral NEural SImulation System. Internet edition. 2003.
  • [3] Branco T, Clark BA, Häusser M. Dendritic discrimination of temporal input sequences in cortical neurons. Science 2010;329(September):1671–5.
  • [4] Carelli PV, Reyes MB, Sartorelli JC, Pinto RD. Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting neurons. J Neurophysiol 2005;94(January):1169–79.
  • [5] Casado JM. Synchronization of two Hodgkin–Huxley neurons due to internal noise. Phys Lett A 2003;310:400–6.
  • [6] Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL. Real- time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 1999;2(July (7)):664–70.
  • [7] Clay JR, DeFelice LJ. Relationship between membrane excitability and single channel open-close kinetics. Biophys J 1983;42(2):151–7.
  • [8] Cox SJ, Griffith BE. A fast, fully implicit backward Euler solver for dendritic neurons. Technical report. Rice University, Department of Computational and Applied Mathematics; 2000.
  • [9] Destexhe A, Mainen ZF, Sejnowski TJ. Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1994;3(1):195–230.
  • [10] Doi S, Onoda Y, Kumagai S. Parameter estimation of various Hodgkin–Huxley-type neuronal models using a gradient-descent learning method. SICE 2002. Proceedings of the 41st SICE Annual Conference, vol. 3; 2002. p. 1685–8.
  • [11] Doya K, Selverston AI. A learning algorithm for Hodgkin– Huxley type neuron models. Proceedings of 1993 International Joint Conference on Neural Networks, IJCNN'93, vol. 2; 1993. p. 1108–11.
  • [12] Doya K, Selverston AI, Rowat PF. A Hodgkin–Huxley type neuron model that learns slow non-spike oscillations. Proceeding of Advances in Neural Information Processing Systems 6, 7th NIPS Conference; 1993. pp. 566–73.
  • [13] Feller W. An introduction to probability theory and its applications, vol. 1. John Wiley & Sons; 1968 [chapter VII].
  • [14] Figas A, Gugała K, Szulc M, Jurkowlaniec A, Rybarczyk A. The FPGA-based CCM class system supporting simulation of stochastic biologically realistic models of neural cells. Advances in system science. Academic Publishing House EXIT; 2010. p. 131–7.
  • [15] FitzHugh F. A kinetic model of the conductance changes in nerve membrane. J Cell Comp Physiol 1965;66(December (Suppl. 2)):111–7.
  • [16] Fox RF. Stochastic versions of the Hodgin-Huxley equations. Biophys J 1997 May;72:2068–74.
  • [17] Gerstner W, Kistler W. Spiking neuron models. Single neurons, populations, plasticity; 2000, Cambridge.
  • [18] Gugała K, Świetlicka A, Burdajewicz M, Rybarczyk A. Random number generation system improving simulations of stochastic models of neural cells. Computing 2013;95(1):259–75. http://dx.doi.org/10.1007/s00607-012-0267-z.
  • [19] Hille B. Ion channels of excitable membranes. Sunderland, MA: Sinauer; 2001.
  • [20] Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 1952;117:500–44.
  • [21] Horikawa Y. Noise effects on spike propagation in the stochastic Hodgkin–Huxley models. Biol Cybern 1991;66 (1):19–25. cited by (since 1996) 14.
  • [22] Horikawa Y. Spike propagation during the refractory period in the stochastic Hodgkin–Huxley model. Biol Cybern 1992;67(3):253–8. cited by (since 1996) 8.
  • [23] Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw 2003;14(6):1569–72.
  • [24] Keener J, Sneyd J. Mathematical physiology, vol. 8. Mathematical biology. Springer; 1998.
  • [25] Kistler WM, Gerstner W, van Hemmen JL. Reduction of the Hodgkin–Huxley equations to a single-variable threshold model. Neural Comput 1997;9(July (5)):1015–45.
  • [26] Koch C. Biophysics of computation: information processing in single neurons, vol. 1999. New York, NY: Oxford University Press; 1999 [chapter 6].
  • [27] Saarinen A, Linne M-L, Yli-Harja O. Modeling single neuron behavior using stochastic differential equations. Neurocomputing 2006;69:1091–6.
  • [28] Schneidman E, Segev I, Tishby N. Information capacity and robustness of stochastic neuron models. Adv Neural Inf Process 2000;12:178–84.
  • [29] Schneidman E, Freedman B, Segev I. Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput 1998;10 (7):1679–703.
  • [30] Skaugen E, Walløe L. Firing behavior in a stochastic nerve membrane model based upon the Hodgkin–Huxley equations. Acta Physiol Scand 1979;107:343–63.
  • [31] Sunar B, Martin WJ, Stinson DR. A provably secure true random generator with build-in tolerance to active attacks. IEEE Trans 2007;56(1):109–19.
  • [32] Świetlicka A. Trained stochastic model of biological neural network used in image processing task. Appl Math Comput 2015;267(September):716–26.
  • [33] Świetlicka A, Gugała K, Jurkowlaniec A, Śniatała P, Rybarczyk A. The stochastic, Markovian, Hodgkin– Huxley type of mathematical model of the neuron. Neural Netw World 2015;3:219–39. http://dx.doi.org/10.14311/NNW.2015.25.012.
  • [34] Świetlicka A, Gugała K, Karoń I, Kolanowski K, Majchrzycki M, Rybarczyk A. Gradient method of learning for stochastic kinetic model of neuron. Proceedings of International Symposium on Theoretical Electrical Engineering, ISTET 2013; 2013. pp. III-17–18.
  • [35] Tuckwell HC. Spike trains in a stochastic Hodgkin–Huxley system. Biosystems 2005;80(1):25–36.
  • [36] Wold K, Tan CH. Analysis and enhancement of random number generator in FPGA based on oscillator rings. Int J Reconfig Comput 2009. article ID: 501672.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e976265-95c9-4694-8cb9-0275a4573a87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.