Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The primary aim of this study was to assess multi-year land use and land cover (LULC) changes utilizing GIS techniques within different landscape patterns of the Wakatobi National Park, Indonesia. The study area, i.e., the Kapota Island is one of the important regions where its terrestrial ecosystem consists of protected and developed zones. A spatial pattern analysis technique was implemented to classify and assess changes in LULC from 1990 to 2020 using Landsat 5, 7, and 8 images. As many as 275 to 414 samples were used in the maximum likelihood procedure, and their accuracy was assessed following field investigations to understand the landscape response to LULC changes. A number of landscape metrics were calculated to understand the landscape patterns in the study region. The results of the analysis show that vegetated areas have changed from 1,111.6 ha in 1990, then to 1,410.9 and 1,227.5 ha in 2010, and 2020, respectively, and this is related to the climate, as during the peak dry season, planting patterns change, leading to a reduction in green cover compared to the rainy season. The results also reveal that landscape metric indices vary considerably according to the variation of nature conditions, especially in the extreme climate events and human intervention. This becomes the implication of the condition where the landscape pattern is realistically fragmented, and complex, with lower connectivity and greater diversity. This approach has proven effective in interpreting human interventions in land utilization, as well as assessing the influence of extreme climate events on ecosystem sustainability in small islands. The higher the spatial resolution of spatial images, the better the interpretation of ecological landscape structure, function, and changes. This study gives an important insight into spatial regulation, especially in the designation of spatial pattern delineation as well as land utilization and ecosystem management at small islands with a dominant protected function.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
117--131
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Doctoral Program, Graduate School, Brawijaya University, Veteran Street, Malang, 65145, Indonesia
- Geospatial Information and Land Use Planning Laboratory, Department of Soil Science, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, Indonesia
autor
- Faculty of Agriculture, Brawijaya University, Veteran Street, Malang, 65145, Indonesia
autor
- Faculty of Fisheries and Marine Sciences, Brawijaya University, Veteran Street, Malang, 65145, Indonesia
autor
- Faculty of Mathematics and Natural Sciences, Brawijaya University, Veteran Street, Malang, 65145, Indonesia
autor
- Geospatial Information and Land Use Planning Laboratory, Department of Soil Science, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, Indonesia
Bibliografia
- 1. Anthony, T., Shohan, A.A.A., Oludare, A., Alsulamy, S., Kafy, A. Al, and Khedher, K.M. 2024. Spatial analysis of land cover changes for detecting environmental degradation and promoting sustainability. Kuwait Journal of Science, 51(2), 1–11. https://doi.org/10.1016/j.kjs.2024.100197
- 2. Arasumani, M., Kumaresan, M., and Esakki, B. 2024. Mapping native and non-native vegetation communities in a coastal wetland complex using multi-seasonal Sentinel-2 time series. Biological Invasions, 26, 1105–1124. https://doi.org/10.1007/s10530-023-03232-y
- 3. Arora, A., Pandey, M., Mishra, V.N., Kumar, R., Rai, P.K., Costache, R., Punia, M., and Di, L. 2021. Comparative evaluation of geospatial scenariobased land change simulation models using landscape metrics. Ecological Indicators, 128, 1–19. https://doi.org/10.1016/j.ecolind.2021.107810
- 4. Barnoaiea, A.R. 2011. Quantifying landscape fragmentation on orthophotos in Suceava and Neamt Counties using FRAGSTATS. Journal of Horticulture, Forestry and Biotechnology, 15(3), 175–181.
- 5. Boongaling, C.G.K., Faustino-Eslava, D.V., and Lansigan, F.P. 2018. Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines. Land Use Policy, 72, 116–128. https://doi.org/10.1016/j.landusepol.2017.12.042
- 6. Bui, D.H., and Mucsi, L. 2022. Predicting the future land-use change and evaluating the change in landscape pattern in Binh Duong province, Vietnam. Hungarian Geographical Bulletin, 71(4), 349–364. https://doi.org/10.15201/hungeobull.71.4.3
- 7. Cansler, C.A., and Mckenzie, D. 2014. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascad. Ecological Applications, 24(5), 1037–1056. https://doi.org/10.1890/13-1077.1
- 8. Cardille, J.A. and Turner, M.G. 2017. Chapter 4 “Understanding Landscape Metrics,” learning landscape ecology, Springer-Verlag, New York, 45–63. https://doi.org/10.1007/978-1-4939-6374-4_4
- 9. Cui, G., Zhang, Y., Shi, F., Jia, W., Pan, B., Han, C., Liu, Z., Li, M., and Zhou, H. 2022. Study of spatiotemporal changes and driving factors of habitat quality: A case study of the agro-pastoral ecotone in Northern Shaanxi, China. Sustainability, 14, 1–23. https://doi.org/10.3390/su14095141
- 10. Devi, A.R., and Shimrah, T. 2022. Assessment of land use and land cover and forest fragmentation in traditional landscape in Manipur, Northeast India. International Journal of Environmental Science and Technology, 19, 10291–10306. https://doi.org/10.1007/s13762-021-03712-5
- 11. Djaenudin, D., Marwan, H., Subagjo, H., and Hidayat, A. 2011. Petunjuk teknis evaluasi lahan untuk komoditas pertanian. Balai Besar Penelitian Dan Pengembangan Sumberdaya Lahan Pertanian Badan Penelitian Dan Pengembangan Pertanian Kementerian Pertanian. Jakarta.
- 12. Fan, C., and Myint, S. 2014. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landscape and Urban Planning, 121, 117–128. https://doi.org/10.1016/j.landurbplan.2013.10.002
- 13. Ge, Y., Li, C., Zhang, T., and Wang, B. 2023. Temporal and spatial change of habitat quality and its driving forces: The case of Tacheng region, China. Frontiers in Environmental Science, 11, 1–14. https://doi.org/10.3389/fenvs.2023.1118179
- 14. Gkyer, E. 2013. Chapter 25: understanding landscape structure using landscape metrics. Advances in Landscape Architecture. Intech Open, United Kingdom, 663–676. https://doi.org/10.5772/55758
- 15. Helmi, M., Adibah, N., Widiaratih, R., Hariyadi, H., and Pratikto, I. 2020. Small islands landscape use mapping and its patches spatial structure analysis at Parang Islands, Karimunjawa National Park, Indonesia. Indonesian Journal of Oceanography, 2(1), 54–63. https://doi.org/10.14710/ijoce.v2i1.7300
- 16. Hesselbarth, M.H.K. 2023. Package ‘landscapemetrics’ R topics. 1–210. https://cran.r-project.org/web/packages/landscapemetrics/landscapemetrics.pdf
- 17. Hong, N.V., Nhat, V.H., Cam, L.V., Thanh, N.D., Quy, K.V., Nhung, T.T., Thao, N.P., and Hien, N.T.T. 2024. Assessing the ecosystem vulnerability and its implications on biodiversity conservation in Pu Mat National Park, Nghean Province, Vietnam. Applied Ecology and Environmental Research, 24(1), 587– 607. https://doi.org/10.15666/aeer/2201_587607
- 18. Hu, J., Zhang, J., and Li, Y. 2022. Exploring the spatial and temporal driving mechanisms of landscape patterns on habitat quality in a city undergoing rapid urbanization based on GTWR and MGWR: The case of Nanjing, China. Ecological Indicators, 143, 1–16. https://doi.org/10.1016/j.ecolind.2022.109333
- 19. Jiao, M., Hu, M., and Xia, B. 2019. Spatiotemporal dynamic simulation of land-use and landscape-pattern in the Pearl River Delta, China. Sustainable Cities and Society, 49, 1–10. https://doi.org/10.1016/j.scs.2019.101581
- 20. Kis, A., Szabó, P., and Pongrácz, R. 2023. Spatial and temporal analysis of drought-related climate indices for Hungary for 1971–2100. Hungarian Geographical Bulletin, 72(3), 223–238. https://doi.org/10.15201/hungeobull.72.3.2
- 21. Kurniawan, F., Adrianto, L., Bengen, D.G., and Prasetyo, L.B. 2019. The social-ecological status of small islands: An evaluation of island tourism destination management in Indonesia. Tourism Management Perspectives, 31, 136–144. https://doi.org/10.1016/j.tmp.2019.04.004
- 22. Li, Q., Jin, T., Peng, Q., Lin, J., Zhang, D., Huang, J., and Liu, B. 2022. Identifying the extent of the spatial expression of landscape fragmentation based on scale effect analysis in Southwest China. Ecological Indicators, 141, 1–12. https://doi.org/10.1016/j.ecolind.2022.109120
- 23. Liang, T., Yang, F., Huang, D., Luo, Y., Wu, Y., and Wen, C. 2022. Land-use transformation and landscape ecological risk assessment in the Three Gorges reservoir region based on the “production–living–ecological space” perspective. In Land, 11(8), 1–13. https://doi.org/10.3390/land11081234
- 24. Liu, X., Yang, G., Que, Q., Wang, Q., Zhang, Z., and Huang, L. 2022. How do landscape heterogeneity, community structure, and topographical factors contribute to the plant diversity of urban remnant vegetation at different scales ? International Journal of Environmental Research and Public Health, 19(21), 1–20. https://doi.org/10.3390/ijerph192114302
- 25. Ma, B., Zeng, W., Xie, Y., Wang, Z., Hu, G., Li, Q., Cao, R., Zhuo, Y., and Zhang, T. 2022. Boundary delineation and grading functional zoning of Sanjiangyuan National Park based on biodiversity importance evaluations. Science of The Total Environment, 825. https://doi.org/10.1016/j.scitotenv.2022.154068
- 26. McGarigal, K., and Marks, B.J. 1995. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. Portland, Oregon. 82–122. https://doi.org/10.2737/pnw-gtr-351
- 27. Munawaroh, E., Purwanto, Y., Suryanto, J., Ajiningrum, P.S., and Priatna, D. 2018. Persepsi lokal terhadap perubahan variabel iklim dalam mengelola SDAH dan lingkungannya di Wakatobi, Sulawesi Tenggara. Jurnal Pendidikan Lingkungan Hidup, 6(2), 22–26. https://journal.unpak.ac.id/index.php/plh/article/view/1017
- 28. Parisi, M.D., Huber, P.R., and Greco, S.E. 2023. Assessing conservation outcomes and maximizing habitat connectivity for multiple species in systematic conservation plans: a case study in Yolo County, California. Landscape Ecology, 38(7), 1621–1642. https://doi.org/10.1007/s10980-023-01664-4
- 29. Prasetyo, L.B. 2017. Pendekatan ekologi lanskap untuk konservasi biodiversitas, fakultas kehutanan, Institut Pertanian Bogor. Indonesia. https://www.researchgate.net/profile/Lilik-Prasetyo/publication/320977620_Pendekatan_Ekologi_Lanskap_untuk_Konservasi_Biodiversitas/Links/5a052867458515eddb832212/Pendekatan-Ekologi-Lanskap-untuk-Konservasi-Biodiversitas.pdf
- 30. Qi, S., Heng, F., and Ji, L. 2023. Landscape change of land use in the Karst Region of Jinan City, North China. Journal of Environmental Engineering and Landscape Management, 31(1), 1–8. https://doi.org/10.3846/jeelm.2023.18063
- 31. Russo-Petrick, K., and Root, K.V. 2023. Factors impacting bat activity and species richness in protected parks in the oak openings region of Northwest Ohio. Environmental Management, 72(5), 1086–1098. https://doi.org/10.1007/s00267-023-01849-2
- 32. Sertel, E., Topaloğlu, R.H., Şallı, B., Algan, I.Y., and Aksu, G.A. 2018. Comparison of landscape metrics for three different level land cover/land use maps. ISPRS International Journal of Geo-Information, 7(10), 1–21. https://doi.org/10.3390/ijgi7100408
- 33. Shafie, B., Javid, A.H., Irani Behbahani, H., Darabi, H., and Hosseinzadeh Lotfi, F. 2023. An analysis of the landscape structure changes as an ecological approach to achieve sustainable regional planning (Case study: Latian Dam Watershed). Journal of Environmental Engineering and Landscape Management, 31(1), 9–22. https://doi.org/10.3846/jeelm.2023.18055
- 34. Sumasgutner, P., Terraube, J., Coulon, A., Villers, A., Chakarov, N., Kruckenhauser, L., and Korpimäki, E. 2019. Landscape homogenization due to agricultural intensification disrupts the relationship between reproductive success and main prey abundance in an avian predator. Frontiers in Zoology, 16(1), 1–14. https://doi.org/10.1186/s12983-019-0331-z
- 35. Talukdar, S., Eibek, K.U., Akhter, S., Ziaul, S., Towfiqul Islam, A.R.M., and Mallick, J. 2021. Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the Teesta River Basin, Bangladesh. Ecological Indicators, 126, 1–12. https://doi.org/10.1016/j.ecolind.2021.107612
- 36. Tang, M., and Fujita, N. 2022. Ecosystem-based disaster risk reduction interpretation of landscape pattern changes based on Land use changes in Tokyo and Shanghai. Ph.D. Thesis, University of Tsukuba, Tsukuba, Japan. https://doi.org/10.1109/ICGMRS55602.2022.9849292
- 37. Tang, X., Wu, Y., Ye, J., Lv, H., Sun, F., and Huang, Q. 2022. Ecotourism risk assessment in Yaoluoping Nature Reserve, Anhui, China based on GIS. Environmental Earth Sciences, 81(7), 1–14. https://doi.org/10.1007/s12665-022-10331-x
- 38. Wu, Z., Zhu, D., Xiong, K., and Wang, X. 2022. Dynamics of landscape ecological quality based on benefit evaluation coupled with the rocky desertification control in South China Karst. Ecological Indicators, 138, 1–13. https://doi.org/10.1016/j.ecolind.2022.108870
- 39. Yang, J., Li, S., Xu, J., Wang, X., and Zhang, X. 2020. Effects of changing scales on landscape patterns and spatial modeling under urbanization. Journal of Environmental Engineering and Landscape Management, 28(2), 62–73. https://doi.org/10.3846/jeelm.2020.12081
- 40. Ye, L., Fang, L., Tan, W., Wang, Y., and Huang, Y. 2016. Exploring the effects of landscape structure on aerosol optical depth (AOD) patterns using GIS and HJ-1B images. Environmental Science: Processes and Impacts, 18(2), 265–276. https://doi.org/10.1039/c5em00538h
- 41. Yu, M., Huang, Y., Cheng, X., and Tian, J. 2019. An ArcMap plug-in for calculating landscape metrics of vector data. Ecological Informatics, 50, 207–219. https://doi.org/10.1016/j.ecoinf.2019.02.004
- 42. Zeng, C., He, J., He, Q., Mao, Y., and Yu, B. 2022. Assessment of land use pattern and landscape ecological risk in the Chengdu-Chongqing economic circle, Southwestern China. Land, 11(5), 1-17. https://doi.org/10.3390/land11050659
- 43. Zhang, B., Zou, H., Chen, B., Zhang, X., Kang, X., Wang, C., and Zhang, X. 2023. Optimizing the distribution pattern of species under climate change: the protection and management of Phellodendron amurense in China. Frontiers in Ecology and Evolution, 11, 1–17. https://www.frontiersin.org/articles/10.3389/fevo.2023.1186627
- 44. Zhang, D., Wang, J., Wang, Y., Xu, L., Zheng, L., Zhang, B., Bi, Y., and Yang, H. 2022. Is there a spatial relationship between urban landscape pattern and habitat quality? Implication for landscape planning of the Yellow River Basin. International Journal of Environmental Research and Public Health, 19, 1–17. https://doi.org/10.3390/ijerph191911974
- 45. Zhang, Y., Sharma, S., Bista, M., and Li, M. 2022. Characterizing changes in land cover and forest fragmentation from multitemporal Landsat observations (1993–2018) in the Dhorpatan Hunting Reserve, Nepal. Journal of Forestry Research, 33(1), 159– 170. https://doi.org/10.1007/s11676-021-01325-9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e95d27b-27b8-4589-91c5-e0b4e0007c8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.