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Rayleigh waves in a half-space exhibiting microplar transversely isotropic generalized thermoelastic 
properties based on the Lord-Shulman (L-S), Green and Lindsay (G-L) and Coupled thermoelasticty (C-T) 
theories are discussed. The phase velocity and attenuation coefficient in the previous three different theories have 
been obtained. A comparison is carried out of the phase velocity, attenuation coefficient and specific loss as 
calculated from the different theories of generalized thermoelasticity along with the comparison of anisotropy. 
The amplitudes of displacements, microrotation, stresses and temperature distribution were also obtained. The 
results obtained and the conclusions drawn are discussed numerically and illustrated graphically. Relevant results 
of previous investigations are deduced as special cases. 
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1. Introduction 
 
 Classical mechanics deals with the basic assumption that the effect of the microstructure of a 
material is not essential for describing its mechanical behavior. Such an approximation has been shown in 
many well-known cases. Often, however, discrepancies between the classical theory and experiments are 
observed, indicating that the microstructure might be important. For example, discrepancies have been found 
in the stress concentrations in the areas of holes, notches and cracks; elastic vibrations characterized by a 
high frequency and small wavelengths, particularly in granular composites consisting of stiff inclusions 
embedded in a weaker matrix, fibers or grains; and the mechanical behavior of complex fluids such as liquid 
crystals, polymeric suspensions, and animal blood. In general, granular composites, for example porous 
materials, are widely used in the area of passive noise control as sound absorbers and the effect of acoustical 
waves characterized by high frequencies and small wavelengths become significant. 
 To explain the fundamental departure of microcontinuum theories from the classical continuum 
theories, a continuum model with microstructures to describe the microscopic motion or a non local model to 
describe the long range material interaction is developed. This theory extends the application of the 
continuum model to microscopic space and short-time scales. The micromorphic theory (Suhubi and 
Eringen, 1964; Eringen, 1999) treats a material body as a continuous collection of a large number of 
deformable particles, with each particle possessing a finite size and inner structure. Using assumptions such 
as infinitesimal deformation and slow motion, the micromorphic theory can be reduced to Mindlin’s 
microstructure theory (1964). When the microstructure of the material is considered rigid, it becomes the 
micropolar theory (Eringen, 1966). 
 Eringen’s micropolar theory is more appropriate for geological materials like rocks, soils since, this 
theory takes into account the intrinsic rotation and predicts the behavior of a material with inner structure. 
Different researchers discussed different type of problems in a transversely isotropic elastic material. 
Abubakar (1962) discussed free vibrations of a transversely isotropic plate. Keck et al. (1971) derived the 
frequency equation for the propagation of train of a nontorsional axisymmetric harmonic wave in infinitely 
long shells, made of three concentric cylinders of different transversely isotropic materials. Shuvalov et al. 
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(1974) described the long wavelength onset of the fundamental branches for a free anisotropic plate with an 
arbitrary through plate variation of material properties. Payton in 1991 studied wave propagation in a 
restricted transversely isotropic elastic solid whose surface contains conical points. However, no attempt has 
been made to study the wave propagation in a micropolar transversely isotropic medium. 
 The aim of the present study is to improve our knowledge about the propagation of waves in a 
micropolar transversely isotopic layer. This study has many applications in various fields of science and 
technology, namely, atomic physics, industrial engineering, thermal power plants, submarine structures, 
pressure vessel, aerospace, chemical pipes and metallurgy. After developing the solution, frequency 
equations connecting the phase velocity with the wave number, for symmetric and skew-symmetric wave 
modes are derived. The amplitude ratios of displacements and microrotation are also obtained. The 
dispersion curves, attenuation coefficients, amplitude ratio of displacements and microrotation for symmetric 
and skew-symmetric waves are presented and illustrated graphically to evince the effect of anisotropy. 
 
2. Basic equations 
 
         Following Eringen (1999), the constitutive relations and balance laws in a general micropolar 
anisotropic medium possessing the center of symmetry, in the absence of body forces, body couples, are 
given by 
 

Balance laws 
 
  , ,ji j it u   

   (2.1) 
  , .ik i imn mn km t j       

 
Constitutive relations 
 

  ,ijkl kl ijkl kl ij 1t A E G 1 Tij t

        
 

   (2.2) 
  .ij jikl kl klji klm G E B     

 
Heat conduction equation  
 

  * *
, , .

2

ij ij 0 0 0 0 ij i j2
K T c 1 T T n u

t t t

                    
   (2.3) 

 
 The deformation and wryness tensor are defined by 
 
  , ,,ji i j ijk k ij i jE u       . (2.4) 

 
The list of symbols is given in the nomenclature. 
 
3. Problem formulation and solution 
 
 We have used appropriate transformations following Slaughter (2002), on the set of Eq.(2.1) to 
derive equations for a micropolar generalized thermoelastic transversely isotopic medium and restricted our 
analysis to the two dimensional problem.  
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 We consider a homogeneous, micropolar generalized thermoelastic transversely isotropic half-space 
initially in an undeformed state and at uniform temperature 0T . We take the origin of the coordinate system 

on the top plane surface and the 3x  axis pointing normally into the half-space, which is thus represented by 

3x 0 . We choose the 1x -axis along the direction of wave propagation so that all particles on a line parallel 

to the 2x -axis are evenly displaced. Therefore, all the field quantities will be independent of the 2x  
coordinate. Further, the disturbance is assumed to be confined to the neighborhood of the free surface and 
hence vanishes as 3x  . So, we assume the components of the displacement and microrotation vector of 
the form 
 
   , ,1 3u 0 uu ,         , , .20 0    (3.1) 

 
 Thus, the field equations reduce to 
 

    ,
22 2 2

31 1 2 1
11 55 13 56 1 1 12 2 2

1 3 3 11 3

uu u uT
A A A A K 1

x x x t xx x t

                     
          (3.2) 

 

    ,
2 2 22

3 3 31 2
66 33 13 56 2 3 12 2 2

1 3 1 31 3

u u uu T
A A A A K 1

x x x t xx x t

                      
  (3.3) 

 

  ,
2 2 2

2 2 1 2 1
77 66 1 12 2 2

3 31 3

u u
B B K K

x xx x t

      
    

   
  (3.4) 

 

  * * * ,
2 2

31
1 3 0 0 0 0 1 32 2

1 31 3

uuT T T
K K c 1 T 1 n

t t t x xx x

                               


    (3.5) 

 

  ,31
33 11 33 3 1

1 3

uu
t A A 1 T

x x t

          
 

   (3.6) 

  ,3 1
31 65 1 2 55

1 3

u u
t A K A

x x

 
   

 
            2

32 66
3

m B
x





 

 
where 
 
  , , ,1 56 55 2 66 56 2 1K A A K A A X K K       
 
and we have used the notations , , , ,11 1 33 3 12 7 13 6 23 5      for the material constants. 

 For the Lord and Shulman (L-S) theory we take ,1 00 n 1   , for Green and Lindsay (G-L) theory 

we take ,1 0 00 n 0     , and for the coupled theory (CT) ,1 0 00 n 0     . 
 For further considerations, it is convenient to introduce the dimensionless variables defined by 
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     
*

, , ,1 1 33
1

x x x x
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*

, , ,1 1 33
1

u u u u
c

           ,ij
ij
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t
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   

 

  
*

,ij 1
ij

56

m c
m

B
 


                    ,2 55

2
1

A

K

                  ,
0

T
T
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                        (3.7) 

 

  * ,t t             * ,0 0              * ,1 1               * ,2 X

j
 


          2 11

1
A

c 


.             

 
4. Normal mode analysis and solution of the problem 
 
 We assume the solution for representing propagating waves in the plane of the form 
 

       , , , , , , 1 3i x mx ct
1 3 2 3 2 1u u T 1 u T u e                                                              (4.1) 

 
where   is the wave number, c   is the angular frequency and c  is the phase velocity of the wave, m  is 

the unknown parameter which signifies the penetration depth of the wave, , ,3 2u T  are respectively, the 

amplitude ratios of the displacement 3u , microrotation 2  and temperature distribution to that of the 

displacement 1u . 
 With the help of Eqs (3.7) and (3.8), field Eqs (3.2)-(3.5) are reduced to (after suppressing primes)  
 

    ,1 3i x mx ct2 2 2
1 2 3 3 2 2 1m a d m u i md a T u e 0               

 

      ,1 3i x mx ct2 2 2
5 3 3 6 2 4 1m d m a u i d ma T u e 0                

   (4.2) 

      ,1 3i x mx ct2 2
9 10 3 5 2 1i md i md u m a u e 0               

 

   2 2
6 7 3 8a a u m a T 0      

 
where 
 

  

 

   

, , ,

, , , ,

2 2 2 2
1 1 2 13 1 3 4 7

2 2
4 14 1 5 8 11 12 6 2 0 0 7 6

a d a i d 1 i a d d

a i d 1 i a d d d a 1 i n a a

              

                  

 

 

  1 11 55d A A ,            2 13 56 55 5d A A A d   ,          2 2
3 1 55d K A , 

 
  4 66 33d A A ,          6 1 2 33 55d K K A A ,          , ,7 55 33 8 77 66d A A d B B   
 

  * *, ,2 2 2 2
9 55 1 66 10 2 55 1 1 66d A c B d K A c K B                * ,2 2

11 1 66d Xc B    
 



Wave propagation in a micropolar transversely isotropic generalized … 251 

  * *, , , ,2
12 55 66 13 1 0 33 14 3 0 33 1 1 3d A j B d T A d T A c c K        

 

  *, , , , .2 2 2
2 3 1 3 1 3 1 3 15 1 55 16 65 55c K K K K d K A d A A            

 
 The condition for the non trivial solution of the system of Eq.(4.2), yields a biquadratic equation in 

 2q m  as 

 

  4 3 2Aq Bq Cq Dq E 0                                                           (4.3) 
 

where 
 

   , ,8 4 6 8
4 7 3 5 1 8 3 9 2 5A B a a a a a a d d d d             

 

  

 
    

   

 
     

,

4
2 5 7 6 3 5 4 2 6 6 10

1 8 3 5 1 8 3 9 7 8

2 6
7 4 1 5 3 9 2 5 5 2 6 9 3 5 10

2
2 3 6 2 5 5 7 6 7 6 9 2

4 6 5 2 3 10 1 8 3 5 1 8 3 5 3 9 7 8

4
4 5 1 7 1

C a d a a a a a d a d d

a a a a a a d d a a

a a a a d d d d a d d d d d d

D a a a a a d a a a d d a

a a a d d d a a a a a a a a d d a a

a a a a a

      
      

      

     
       

       ,8 6 10 2 5 5 8 6 9 8 3 5 10 8a d d d d a a d d d d d d d    

 

 

     .2 2
2 6 6 10 5 3 6 1 8 3 5 6 10E a d a d a a a a a a a d d      

 
 The complex coefficients in Eq.(4.3) implies that four roots, jq , (j=1,2,3,4) of this equation may be 

complex. The complex phase velocities of the quasi-waves, will be varying with the direction of phase 
propagation. Therefore, the three waves propagating in such a medium are attenuating waves. These waves 
are called quasi-waves because polarisations may not be along the dynamic axis. Analogous to the 
propagation in a micropolar isotropic thermoelastic medium, these coupled waves may be called quasi-
longitudinal displacement (QLD) waves, quasi-transverse microrotational (QCTM) waves, quasi- transverse 
displacement (QCTD) waves and quasi-thermal waves (QCT) that are propagating with the descending phase 
velocities respectively. 
 
5. Boundary condition 
 
 The surface 3x 0  of the half-space is assumed to satisfy the following boundary conditions 
 

  , , ,33 31 32
3

T
t 0 t 0 m 0 hT 0

x


    


 

 

where h 0  is the surface heat transfer coefficient; 
h 0  corresponds to thermally insulated boundaries and 
h   refers to isothermal boundaries.                                                                                   (5.1) 
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Rayleigh wave equation  
 
 To obtain the solution for surface waves, it is essential that motion is confined to the free surface 

3x 0  of the half-space, so that the characteristic roots  jq  must satisfy the radiation conditions 

  Re jq 0 . So, we take the solution for the displacement, microrotation and temperature distribution of 

the form  
 

       , , , , , , 1 3 j
4

i x ct ix m
1 3 2 j j j j

j 1

u u T A 1 r s t e
  



                                       (5.2) 

 
where 
 

  , , ,j j j
II III IV

r s t
I I I

    

 

  

j

j

j

2 2
3 6 j 4

2 2
10 5

2 2
j 7 8

m a i d m a

I i d m a 0

m a 0 m a

   

     

 

,         ,j

j

2
j 5 6 j 4

2 2
j 9 5

2 2
6 8

m d i d m a

II im d m a 0

a 0 m a

  

     

 

  

 

  ,

j

j

2 2 2
j 5 3 j 4

j 9 10

2 2
6 j 7 8

m d m a m a

III im d i d 0

a m a m a

    

    

 

          .

j

j

2 2 2
j 5 3 6

2 2
j 9 10 5

6 j 7

m d m a i d

IV im d i d m a

a m a 0

     

          

 
 Using Eq.(5.2) in the boundary condition (5,1), we obtain the frequency equation of the Rayleigh 
wave in micropolar generalized thermoelastic transversely isotropic half-space of the form 
 
  1 2 1 3 1 4 2 3 2 4 3 4m m AT1 m m AT 2 m m AT3 m m AT4 m m AT5 m m AT6 0               (5.3) 
 
where 
 

  

     

     

* * * * * * * *

* * * * * * * *

, ,

, ,

1 2 2 1 3 4 4 3 1 3 3 1 4 2 2 4

1 4 4 1 2 3 3 2 2 3 3 2 1 4 4 1

AT1 s t s t a b a b AT 2 s t s t a b a b

AT 3 s t s t a b a b AT 4 s t s t a b a b

     

     

 

 

  
     * * * * * * * *, ,2 4 4 2 3 1 1 3 3 4 4 3 1 2 2 1AT 5 s t s t a b a b AT6 s t s t a b a b     

 

  * */ , , ,.. .2
j 1 7 j j 14 j 7 j 16 j j j 15a i d d r m d t d b i d r m s d j 1 4            
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Amplitudes of stresses and temperature distribution 
 
 The amplitudes of stresses and temperature distribution for plane waves can be obtained as 
 

   * 1 i 2
4

i x ct im x
33 i j

j 1

t A a e   



 ,                * 1 i 2
4

i x ct im x
31 i j

j 1

t A b e   



 , 

   (5.4) 

   1 i 2
4

i x ct im x
32 i j j

j 1

m A s m e   



 ,             * 1 i 2
4

i x ct im x
33 i j

j 1

t A a e   



 .            

 
Particular case: 
 
(i) The resulting expressions of stresses and temperature distribution for coupled theory (C-T) can be 

obtained by substituting ,1 0 00 n 0      in Eq.(5,4). 

(ii) Taking, ,1 00 n 1    in Eq.(5.4), we obtain the expressions of stresses and temperature distribution 
corresponding to the Lord and Shulman (L-S) theory. 

(iii) To obtain the expressions of stresses and temperature distribution corresponding to the Green and 
Lindsay (G-L) theory we substitute ,1 0 00 n 0      in Eqs (5.4).  

 
6. Numerical results and discussion 
 
 In order to illustrate the theoretical results obtained in the preceding sections, we now present some 
numerical results. For numerical computations, we take the values for relevant parameters for the micropolar 
transversely isotropic thermoelastic solid as 
 

  

. , . ,

. , . ,

10 2 10 2
11 33

10 2 10 2
55 66

A 13 8 10 Nm A 14 43 10 Nm

A 3 7 10 Nm A 4 2 10 Nm

 

 

   

   
 

  

. , . ,

. , . ,

10 2 10 2
13 56

9 9
77 66

A 8 85 10 Nm A 2 977 10 Nm

B 3 71 10 N B 3 9 10 N

    

   

 

 

  . ,31 74 Kg m                      . 15 2j 0 2 10 m  , 
 

  * . sec2 oK 0 6 10 J m C  ,        * . oC 0 23 J Kg C ,         .T 298 K  
 
 Following Gauthier (1982) we take the non dimensional values for aluminium epoxy like composite 
as 
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*

. , . , , ,

. , . , . .

3 3 10 2 10 2 10 2

1 5 4 2

2 19 10 Kgm 9 4 10 Nm 4 10 Nm K 1 10 Nm

C 1 04CalK 0 779 10 N j 0 2 10 m

  

  

          

     

 

 
 All numerical computations are carried out for a single fixed value of frequency .75  and for two 
given values of the wave number . , .25 35  . The computations were carried out within the range 

10 x 10  . 
 The solid lines represent the case of the micropolar thermoelastic transversely isotropic solid (MTIS) 
and the broken lines represent the case of the micropolar thermoelastic isotropic solid (MIS). A comparison 
of the three theories of generalized thermoelasticity, namely, coupled thermoelasticity (C-T), Lord Shulman 
(L-S) and Green Lindsay (G-L) is shown in all the graphs. The solid and dotted line without the center 
symbol corresponds to the C-T theory, solid and dotted line with the center symbol ( )o o    corresponds to 

the L-S theory and the solid and dotted line with the center symbol ( )  corresponds to the case of the 
G-L theory. 
       Figures 1-2 show the variation of phase velocity and specific loss with the wave number and Figs 3-9 
show the variation of stresses, displacements, microrotation and temperature distribution with respect to 
distance.  
          It follows from Fig.1 that the variation of phase velocity for both MTIS and MIS decreases sharply and 
then attains a constant value with an increase in the wave number. Figure 2 presents that the value of specific 
loss initially oscillates within the interval (0, 2) and then becomes constant with the wave number for both 
MTIS and MIS. Figures 3 and 4 show that the value of normal stress and tangential stress increases sharply 
within the interval (0, 2) and then decreases to become constant at the end. The variations for all the 3 
theories are similar with a slight difference in their amplitude. It follows from Fig.5 that the value of 
tangential couple stress initially goes on increasing with an increase in the distance up to a value 6 of 
distance, but after that it decreases with a further increase in the distance, when the wave number is .25. 
However, as the value of the wave number gets increased, the value of tangential couple stress initially 
oscillates and then decreases.  
 

       
 
Fig.1. Variation of phase velocity with wave number.       Fig.2. Variation of specific loss with wave number. 
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Fig.3. Variations of normal stress with distance.                Fig.4. Variations of tangential stress with distance. 
 
 Figures 6-9 depict the variations of amplitudes and displacement, microrotation and temperature 
distribution with distance. It is illustrated in these figures that the value of displacements and microrotation 
go on decreasing as the distance from the surface increases. This variation pattern is physically admissible 
since the characteristics of Rayleigh waves are that the amplitude of the wave decreases rapidly with the 
depth. The rate of the decrease depends on the wavelength. Figure 9 shows that the value of temperature 
distribution initially increases at a depth of 5 units from the surface and then goes on decreasing with an 
increase in the distance. The value of displacements and microrotation gets decreased with an increase in the 
wave number. The variation pattern for all the three theories of thermoelasticity varies in the same manner 
with a slight difference in magnitude. 
 

  
 

Fig.5. Variations of tangential couple stress with distance.       Fig.6. Variation of normal displacement with distance. 
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Fig.7. Variations of tangential displacement with distance.        Fig.8. Variations of microrotation with distance. 
 

 
 

Fig.9. Variations of temperature distribution with distance. 
 
5. Conclusions 
 
 The propagation of waves in a micropolar transversely isotropic medium possessing thermoelastic 
properties based on the Lord-Shulman (L-S), Green and Lindsay (G-L) and coupled thermoelasticty (C-T) 
theories are discussed. After developing the solution, the frequency equation for the propagation of Rayleigh 
waves has been derived. The expressions for amplitudes of stresses, displacements, microratation and 

 

0 2 4 6 8 10
Distance

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

T
a

n
g

e
nt

ia
l d

is
p

la
ce

m
e

n
t

C-T, .25

L-S, .25

G-L, .25

C-T, .35

L-S, .35

G-L, .35

 

0 2 4 6 8 10
Distance

0

0.2

0.4

0.6

0.8

M
ic

ro
ro

ta
tio

n

C-T, .25

L-S, .25

G-L, .25

C-T, .35

L-S, .35

G-L, .35

 

0 2 4 6 8 10
Distance

2.4

2.8

3.2

3.6

4

4.4

T
e

m
pe

ra
tu

re
 d

is
tr

ib
u

tio
n

C-T, .25

L-S, .25

G-L, .25

C-T, .35

L-S, .35

G-L, .35



Wave propagation in a micropolar transversely isotropic generalized … 257 

temperature distribution have been derived and computed numerically. The numerical results have been 
plotted graphically. The results computed numerically are found to be in close agreement with the theoretical 
results. 
 
Nomenclature 
 
 , ,ijkl ijkl ijklA G B   – characteristic constants of the material following the symmetry properties given by Eringen (1999) 

 *c   – specific heat at constant strain 
 j   – microinertia 

 *
ij i ijK K    – thermal conductivity 

 ijm   – components of couple stress 

 T   – temperature change 
 0T   – uniform reference temperature  

 ijt   – components of stress 

 iu   – components of displacement 

 ij   – thermal elastic coupling tensor  

 ij   – Kronecker delta 

    – density 

 ,0 1    – thermal relaxation times 

    – microrotation vector 

 i   – components of microrotation 
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