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1. Introduction 

Most real technical systems are very complex and it 
is difficult to analyze their safety. Large numbers of 
components and subsystems and their operating 
complexity cause that the evaluation and 
optimization of their safety is complicated. The 
complexity of the systems’ operation processes and 
their influence on changing in time the systems’ 
structures and their components’ safety 
characteristics is often very difficult to fix and to 
analyze. A convenient tool for solving this problem 
is a semi-markov [3] modeling of the system 
operation processes linked with a multi-state 
approach for the system safety analysis [2], [12] and 
a linear programming for the system safety 
optimization [7]. This approach to system safety 
investigation is based on the multi-state system 
reliability analysis considered for instance in [1], [4] 
and on semi-markov processes modeling discussed 
for instance in [10], [11]. 
 
2. System safety in variable operation 
conditions  

We assume that the system during its operation 
process has v different operation states. Thus, we can 
define the system operation process ),(tZ  

,,0 >+∞∈<t  as the process with discrete operation 
states from the set  

   }..,..,,{ 21 vzzzZ =  
 
In practice, a convenient assumption is that Z(t) is a 
semi-markov process [3] with its conditional sojourn 
times blθ  at the operation state bz  when its next 

operation state is ,lz  ,,...,2,1, vlb =  .lb ≠  In this 
case the process Z(t) may be described by:  
- the vector of probabilities of the process initial 
operation states ,)]0([ 1 νxbp  
- the matrix of the probabilities of the process 
transitions between the operation states ννxblp ][ , 

where 0)( =tpbb  for ,,...,2,1 vb =  
- the matrix of the conditional distribution functions 

ννxbl tH )]([  of the process sojourn times ,blθ  ,lb ≠  

in the operation state bz  when the next operation 

state is ,lz  where  )()( tPtH blbl <= θ  for 

,,...,2,1, vlb =  ,lb ≠  and 0)( =tH bb  for .,...,2,1 vb =  

Under these assumptions, the sojourn times blθ  mean 
values are given by  
 

   ][ blbl EM θ= ∫=
∞

0

),(ttdH bl  ,,...,2,1, vlb =            (1) 

   .lb ≠         
                                                                                     

 
Kołowrocki Krzysztof 

Soszyńska Joanna 
Maritime University, Gdynia, Poland 
 
 
 

Safety and risk optimization of a ferry technical system 
 
 
 

 
 

Keywords 

safety function, risk function, operation process, optimization. 
 
Abstract 

The joint general model of safety of complex technical systems in variable operation conditions linking a semi-
markov modeling of the system operation processes with a multi-state approach to system safety analysis and 
linear programming are applied in maritime transport to safety and risk optimization of a ferry technical 
system. 
 
 



Kołowrocki Krzysztof, Soszyńska Joanna 
Safety and risk optimization of a ferry technical system 

 

 160

The unconditional distribution functions of the 
sojourn times bθ  of the process )(tZ  at the 

operation states ,bz  ,,...,2,1 vb =  are given by 
 

   )(tH b  = ∑
=

v

l
blbl tHp

1
),(  .,...,2,1 vb =  

 
The mean values E[ bθ ] of the unconditional sojourn 

times bθ  are given by   
 

   ][ bb EM θ=  = ∑
=

v

l
blbl Mp

1
, ,,...,2,1 vb =                 (2)     

                                                       
where blM  are defined by (1). 
Limit values of the transient probabilities at the 
operation states  
 
   )(tpb = P(Z(t) = bz ) , ),,0 +∞∈<t  ,,...,2,1 vb =  
 
are given by   
 

   bp  = )(lim tpb
t ∞→

 = ,

1
∑
=

v

l
ll

bb

M

M

π

π
 ,,...,2,1 vb =            (3)  

                                                   
where the probabilities bπ  of the vector νπ xb 1][  
satisfy the system of equations   
 

   







∑ =

=

=

v

l
l

blbb p

1
.1

]][[][

π

ππ
                                                 (4)   

                                                             
In the case of a periodic operation process the limit 
transient probabilities bp  are long term proportions 

of sojourn times at the particular operation states ,bz  
.,...,2,1 vb =     

We assume that the system is composed of n  
multistate components ,iE  ,,...,2,1 ni =  and that the 
changes of the operation process Z(t) states have an 
influence on the system components iE  safety and 
on the system safety structure as well.  
Consequently, we denote the component iE  lifetime 

in the safety states subset },...,1,{ zuu +  by )()( uT b
i  

and by  
 

   ),()( ⋅ts b
i = [1, ),1,()( ts b

i ),2,()( ts b
i  ..., ),()( zts b

i ], 
 
where for ),,0 ∞∈<t  ,,...,2,1 vb =  ,,...,2,1 zu =  
 

   
),)()((),( )()(

b
b

i
b

i ztZtuTPuts =>=
 

 

its conditional safety function while the system is at 
the operational state ,bz  .,...,2,1 vb =  
Similarly, we denote the system lifetime in the safety 
states subset },...,1,{ zuu +  by )()( uT b  and by

   
 
  ),()( ⋅tb

bns = [1,
 

),1,()( tb

bns ),2,()( tb

bns
 
...,

 
),()( ztb

bns ] 

 
for },,...,2,1{ nnb ∈ where bn  are the numbers of 

system components in the operation states bz  where 

for ),,0 ∞∈<t  },,...,2,1{ nnb ∈ ,,...,2,1 ν=b  
,,...,2,1 zu =  

 
   ),,()( utb

bns ),)()(( )(
b

b ztZtuTP =>=
 

 
is the conditional safety function of the system while 
the system is at the operational state ,bz  .,...,2,1 vb =   

Thus, the safety function ),()( uts b
i  is the conditional 

probability that the component iE  lifetime )()( uT b
i  

in the state subset },...,1,{ zuu +  is not less than t, 
while the operation process Z(t) is at the operation 
state .bz  Similarly, the safety function ),()( utb

bns  is 

the conditional probability that the system lifetime 
)()( uT b  in the state subset },...,1,{ zuu +  is not less 

than t, while the operation process Z(t) is at the 
operation state .bz  

 
In the case when the system operation time is large 
enough, the unconditional safety function of the 
system is given by 
 
   ),( ⋅tns = [1,

 
),1,(tns ),2,(tns

 
...,

 
),( ztns ], ,0≥t  

 
where by [6] 
 

   
),( utns ))(( tuTP >= ),()(

1
utp b

bn
b

bs∑≅
=

ν
                (5)   

                                                   
for ,0≥t },,...,2,1{ nnb ∈  ,,...,2,1 zu =  and )(uT  is 
the unconditional lifetime of the system in the safety 
state subset }.,...,1,{ zuu +   
The mean values of the system lifetimes in the safety 
state subset },...,1,{ zuu +  are  
 

   
,)()]([)(

1
∑≅=
=

ν
µµ

b
bb upuTEu ,,...,2,1 zu =          (6)     

                                              
 where  
 

   
,),()(

0

)(
∫=
∞

dtutu b
b bnsµ  },,...,2,1{ nnb ∈                (7) 
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   .,...,2,1 zu =       
                                      
The mean values of the system lifetimes in the 
particular safety states ,u  are [4] 
 
   ),1()()( +−= uuu µµµ ,1,...,2,1 −= zu  
 

   ).()( zz µµ =                                                          (8) 
 
A probability  
 
   r(t) = P(s(t) < r | s(0) = z) = P(T(b)(r) ≤ t),  
 
   ),,( ∞−∞∈t  
 
that the system is in the subset of safety states worse 
than the critical state r, r ∈{1,...,z} while it was in 
the state z at the moment t = 0 is called a risk 
function of the multi-state system or, in short, a risk 
[4].  
 
Under this definition, from (6), we have     
 
   r(t) = −1  sn(t,r), ).,( ∞−∞∈t                                (9) 
                                                                  
and if τ is the moment when the risk exceeds a 
permitted level δ, then   
 
   =τ r ),(1 δ−                                                          (10) 
 

where r )(1 t− , if it exists, is the inverse function of 
the risk function r(t).  

 
3. Optimal transient probabilities maximizing 
system lifetimes 

Considering the equation (5), it is natural to assume 
that the system operation process has a significant 
influence on the system safety. This influence is also 
clearly expressed in the equation (6) for the mean 
values of the system unconditional lifetimes in the 
safety state subsets. From linear equation (6), we can 
see that the mean value of the system unconditional 
lifetime )(uµ , ,,...,2,1 zu =  is determined by the 

limit values of transient probabilities ,bp  

,,...,2,1 ν=b  of the system operation states given by 
(3) and the mean values )(ubµ , ,,...,2,1 ν=b  

,,...,2,1 zu =  of the system conditional lifetimes in 
the safety state subsets },,...,1,{ zuu + ,,...,2,1 zu =  
given by (7). Therefore, the system lifetime 
optimization approach based on the linear 
programming can be proposed. Namely, we may 
look for the corresponding optimal values bp&  of the 

transient probabilities bp  in the system operation 
states to maximize the mean value )(uµ  of the 
unconditional system lifetimes in the safety state 
subsets },...,1,{ zuu +  under the assumption that the 

mean values )(ubµ  of the system conditional 
lifetimes in the safety state subsets are fixed. As a 
special case of the above formulated system lifetime 
optimization problem,  if ,r  ,,...,2,1 zr =  is a system 
critical safety state, then we want to find the optimal 
values bp&  of the transient probabilities bp  in the 
system operation states to maximize the mean value 

)(rµ  of the unconditional system lifetime in the 
safety state subset },...,,1,{ zrr +  under the 

assumption that the mean values )(rbµ , 
,,...,2,1 ν=b  ,,...,2,1 zr =  of the system conditional 

lifetimes in this safety state subset are fixed. More 
exactly, we formulate the optimization problem as a 
linear programming model with the objective 
function of the following linear form  
 

   ∑=
=

ν
µµ

1
)()(

b
bb rpr                                             (11) 

 
for a fixed },...,2,1{ zr ∈  and with the following 
bound constraints 
 

    ∑ =
=

ν

1
,1

b
bp  ,bbb ppp

)( ≤≤  ,,...,2,1 ν=b           (12) 

 
where )(rbµ , ,0)( ≥rbµ  ,,...,2,1 ν=b  are fixed 
mean values of the system conditional lifetimes in 
the safety state subset },...,1,{ zrr +  and  
 
   ,bp

(
 10 ≤≤ bp

(
 and ,bp

)
 ,10 ≤≤ bp

)
  

 
   ,bb pp

)( ≤ ,,...,2,1 ν=b                                       (13) 
 
are respectively the lower and upper bounds of the 
unknown transient probabilities bp . 

Now, we can obtain the optimal solution of the 
formulated by (11)-(13) the linear programming 
problem, i.e. we can find the optimal values bp&  of 

the transient probabilities ,bp  ,,...,2,1 ν=b  that 
maximize the objective function given by (11). First, 
we arrange the system conditional lifetime mean 
values ),(rbµ  ,,...,2,1 ν=b  in non-increasing order  
 
   ≥)(

1
rbµ ≥)(

2
rbµ . . . ),(rbν

µ≥   

 
where },...,2,1{ ν∈ib  for .,...,2,1 ν=i  
Next,  we substitute  
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ibi px = , 

ibi px
(( = , 

ibi px
)) =  for  ν,...,2,1=i    (14) 

 
and we maximize with respect to ,ix  ,,...,2,1 ν=i  
the linear form (11) that after this transformation 
takes the form  
 

    ∑=
=

ν
µµ

1
)()(

i
ibi rxr                                              (15) 

 
for a fixed },...,2,1{ zr ∈  with the following bound 
constraints 
 

    ∑ =
=

ν

1
,1

i
ix  ,iii xxx

)( ≤≤ ,,...,2,1 ν=i                   (16) 

 
where ),(r

ibµ  ,0)( ≥r
ibµ  ,,...,2,1 ν=i  are fixed 

mean values of the system conditional lifetimes in 
the safety state subset },...,1,{ zrr +  arranged in non-
increasing order and  
 
   ,ix
(

 10 ≤≤ ix
(

 and ,ix
)

 ,10 ≤≤ ix
)

  

 
   ,ii xx

)( ≤ ,,...,2,1 ν=i                                           (17) 
 
are lower and upper bounds of the unknown 
probabilities ix , ,,...,2,1 ν=i  respectively.  
We define  
 

   ∑=
=

ν

1
,

i
ixx
((

 xy
(−= 1ˆ                                            (18) 

 
and 
 

   ,00 =x
(

 00 =x
)

  and ∑=
=

I

i
i

I xx
1

,
((

 ∑=
=

I

i
i

I xx
1

))
      (19) 

   for .,...,2,1 ν=I          
                                            
Next, we find the largest value },...,1,0{ ν∈I  such 
that  
 
   yxx II ˆ<− ()

                                                       (20) 
 
and we fix the optimal solution that maximize (15) in 
the following way:  
i) if ,0=I  the optimal solution is  

    11 ˆ xyx
(

& +=  and ii xx
(

& =                                    (21) 

    for ;,...,3,2 ν=i    

ii)  if ,0 ν<< I  the optimal solution is  

    ii xx
)

& =  for ,,...,2,1 Ii =  

    11 ˆ ++ ++−= I
II

I xxxyx
(()

&  and ii xx
(

& =            (22) 

     for ;,...,3,2 ν++= IIi   

iii)  if ,ν=I  the optimal solution is  

     ii xx
)

& =  for .,...,2,1 ν=i                                   (23) 

                                                                                                
Finally, after making the inverse to (14) substitution, 
we get the optimal limit transient probabilities 
 
   iib xp && =  for  ,,...,2,1 ν=i                                   (24) 

 
that maximize the system mean lifetime )(rµ in the 
safety state subset },,...,1,{ zrr + defined by the 
linear form (11) giving its maximum value in the 
following form 
 

   ∑=
=

ν
µµ

1
)()(

b
bb rpr &&                                               (25) 

 
for a fixed },...,2,1{ zr ∈ .  
From the above, replacing r  by ,u ,,...,2,1 zu =  we 
obtain the corresponding optimal solutions for the 
mean values of the system unconditional lifetimes in 
the safety state subsets  },...,1,{ zuu +  of the form  
 

   ∑=
=

ν
µµ

1
)()(

b
bb upu &&  for  .,...,2,1 zu =                  (26) 

 
Further, according to (5), the corresponding optimal 
unconditional multistate safety function of the 
system is  
 

   
),( ⋅tns&  = [1, ),1,(tns& ..., ),( ztns& ],                      (27) 

 
where  
 

   ),( utns& )(

1
]),([ b

v

b
nb utp∑≅

=
s&  for 0≥t ,                  (28) 

                                                                   
   zu ,...,2,1=   
 
and by (8) the optimal solutions for the mean values 
of the system unconditional lifetimes in the particular 
safety states are of the form  
 
   ),1()()( +−= uuu µµµ &&&  ,1,...,1,0 −= zu      
 
   ).()( zz µµ && =                                                       (29) 
 
Moreover, considering (9) and (10), the 
corresponding optimal system risk function and the 
moment when the risk exceeds a permitted level δ, 
respectively are given by  
 
   )(tr& = 1 - ),( rtns&  ),,( ∞−∞∈t                          (30) 
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and    
 
   =τ& ),(δ-1r&                                                          (31) 
 

where ),(t-1r&  if it exists, is the inverse function of 

the risk function ).(tr&   

 

4. The ferry technical system safety and risk  

We consider a passenger ro-ro ferry operating in 
Baltic Sea between the Gdynia port in Poland and the  
Karlskrona port in Sweden on regular everyday 
timetable.  

 

Figure 1. The ferry on her voyage 

We assume that the ferry is composed of seven 
subsystems 1S , 2S , ,3S  ,4S ,5S ,6S 7S  having an 

essential influence on its safety [12]. These 
subsystems are:  

1S  - a navigational subsystem,  

2S  - a propulsion and controlling subsystem, 

3S  - a loading and unloading subsystem,  

4S  - a hull subsystem, 

5S  - an anchoring and mooring subsystem, 

6S  - a protection and rescue subsystem,  

7S  - a social subsystem. 
In the ferry safety analysis we omit the protection 
and rescue subsystem 6S  and the social subsystem 

7S  and we consider its strictly technical subsystems 

1S , 2S , 3S , 4S  and 5S  only.  

Additionally, we assume that subsystems ,iS  
5,4,3,2,1=i  are composed of five-state components, 

i.e. z = 4, with the multi-state safety functions 
 

   ),()( ⋅ts b
i  

 

   = [1, ),1,()( ts b
i ),2,()( ts b

i ),3,()( ts b
i )4,()( ts b

i ],   
 

   ),,0 ∞∈<t  ,18,...,2,1=b  ,4,3,2,1=u  
 
with exponential co-ordinates different in various 
operation states bz , .18,...,2,1=b  
Further, assuming that the ferry is in the safety state 
subset {u,u+1,...,4} if all its subsystems are in this 
subset of safety states, we conclude that the ferry is a 
series system [4] of subsystems 1S , 2S , 3S , 4S , 5S  
with a scheme presented in Figure 2.  
 

Figure 2. The scheme of a ferry technical system 
safety structure 

We assume that the changes of the ferry operation 
states have an influence on its technical system 
safety structure and on its subsystems iS  safety 
functions as well [12]. Taking into account the 
operation process of the considered ferry we 
distinguish the following as its eighteen operation 
states:  
• an operation state −1z loading at Gdynia port,  

• an operation state −2z unmooring operations at 
Gdynia port, 

• an operation state −3z leaving Gdynia port and 
navigation to “GD” buoy,  

• an operation state −4z navigation at restricted 
waters from “GD” buoy to the end of Traffic 
Separation Scheme, 

• an operation state −5z navigation at open waters 
from the end of Traffic Separation Scheme to 
“Angoring” buoy, 

• an operation state −6z navigation at restricted 
waters from “Angoring” buoy to “Verko” Berth at 
Karlskrona, 

• an operation state −7z mooring operations at 
Karlskrona port, 

• an operation state −8z unloading at Karlskrona 
port, 

• an operation state −9z loading at Karlskrona port,  

• an operation state −10z unmooring operations at 
Karlskrona port, 

• an operation state −11z ship turning at Karlskrona 
port,  

• an operation state −12z leaving Karlskrona port 
and navigation at restricted waters to “Angoring” 
buoy, 

• an operation state −13z navigation at open waters 

from “Angoring” buoy to the entering Traffic 
Separation Scheme, 

 S1  S2  S5 
                  .  .   . 
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• an operation state −14z navigation at restricted 
waters from the entering Traffic Separation 
Scheme to “GD” buoy, 

• an operation state −15z navigation from “GD” 
buoy to turning area, 

• an operation state −16z ship turning at Gdynia 
port,  

• an operation state −17z mooring operations at 
Gdynia port, 

• an operation state −18z unloading at Gdynia port. 
The ferry operation process is very regular in the 
sense that the operation state changes are from the 
particular state ,bz  ,17,...,2,1=b  to the neighboring 

state ,1+bz  ,17,...,2,1=b  and from 18z  to 1z  only. 
Therefore, the probabilities of transitions between 
the operation states are given by 
 

    .

00...001

10...000

...

00...100

00...010

][























=blp  

 
On the basis of statistical data coming from experts 
[12], the mean values of the conditional sojourn 
times in the operation states are (in minutes): 
 
   ,33.5412 =M  ,57.223 =M ,57.3634 =M  
 
   ,5.5245 =M ,95.52556 =M ,16.3767 =M     
 
   ,02.778 =M ,43.2189 =M ,69.53910 =M  
 
   ,93.21011 =M ,38.41112 =M ,86.231213 =M  
 
   ,69.5091314 =M ,14.501415 =M ,28.341516 =M  
 
   ,52.41617 =M ,62.51718 =M .74.18181 =M  
 
Hence, by (2), the unconditional mean sojourn times 
in the operation states are (in minutes):  
 
   1M ,33.54= =2M ,57.2 =3M ,57.36  
 
   =4M ,5.52 =5M ,95.525 =6M ,16.37  
 
   =7M ,02.7 =8M ,43.21 =9M ,69.53  
 

   =10M ,93.2 =11M ,38.4 =12M ,86.23  
 

   =13M ,69.509 =14M ,14.50 =15M ,28.34  
 
   =16M ,52.4 =17M ,62.5 =18M .74.18  
 
Since from the system of equations (4) we get 
 
   056.0=iπ  for ,18,...,2,1=i  
 
then the long term proportion of transients bp  at the 

operational states bz , according to (3), are given by  
 
   ,037.01 =p ,002.02 =p  ,025.03 =p ,036.04 =p  
 
   ,364.05 =p  ,025.06 =p ,005.07 =p ,014.08 =p   
 
   ,037.09 =p ,002.010 =p ,003.011 =p  ,017.012 =p  
 
   ,354.013 =p ,035.014 =p ,024.015 =p ,003.016 =p  
 
   ,004.017 =p  .013.018 =p                                   (32)   
 
Under the assumption that the changes of the ferry 
operation states have an influence on the subsystem 

iS  safety and on the ferry safety structures as well, 
on the basis of expert opinions and statistical data 
given in [12], the ferry technical system safety 
structures and their components safety functions at 
different operation states can be determined.   
For instance, at the operation state 1z , i.e. at the 

loading state the ferry built of 21 =n  subsystems 3S  

and 4S  forming a series structure [4] shown in 
Figure 3. 
 

 
 

Figure 3. The scheme of the ferry structure at the 
operation state 1z  

Considering that the ferry is in the safety state 
subsets }4,...,1,{ +uu , ,4,3,2,1=u  if all its 
subsystems are in this safety state subset, the 
considered system is a five-state series system [4] 
and the conditional safety function of the ferry while 
the ferry is at the operational state 1z is given by  
 

   
),()1(

2 ⋅ts
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= [1, )1,()1(

2 ts , )2,()1(
2 ts , )3,()1(

2 ts , )4,()1(
2 ts ], (33)   

                                             
where  
                                             
   =),()1(

2 uts ),()1(
1,1,1;3 uts ),()1(

1,1 uts                         (34) 

 
   for ),,0 ∞∈<t  u = 1,2,3,4,          
                                  

 
i.e. 
 

   
)1,()1(

2 ts
 

    
= exp[−0.433t] exp[−0.05t] = exp[−0.483t],     (35) 

 

   
)2,()1(

2 ts
 

    
= exp[−0.59t] exp[−0.06t] = exp[−0.65t]          (36)     

                                                                                      
    )3,()1(

2 ts   

   = exp[−0.695t] exp[−0.065t] = exp[−0.76t],      (37) 
 

   
)4,()1(

2 ts
 

   = exp[−0.85t] exp[−0.07t] = exp[−0.92t].          (38) 
                                               
The expected values and standard deviations of the 
ferry conditional lifetimes in the safety state subsets 
calculated from the above result given by (33)-(38), 
according to (7), at the operational state 1z  are:  
 
   )1(1µ ≅ 2.07, )2(1µ 54.1≅  
 
   )3(1µ ≅ 1.32, )4(1µ ≅ 1.09 years,                      (39) 
                                 
   )1(1σ  ≅ 2.07, )2(1σ  ≅ 1.54,  
 
   )3(1σ  ≅ 1.32, )4(1σ  ≅ 1.09 years,                   (40)                              
 
and further, using (8), it follows that the ferry 
conditional lifetimes in the particular safety states at 
the operational state 1z are:  
 
   ≅)1(1µ 0.53, )2(1µ ≅ 0.22,  
 
   )3(1µ ≅ 0.23, )4(1µ ≅ 1.09 years.                      (41) 
 
At the operation states 2z , i.e. at the unmooring 
operations state the ferry is built of 32 =n  
subsystems ,1S  2S  and 5S  forming a series structure  
[4] shown in Figure 4. 
 

 
 

Figure 4. The scheme of the ferry structure at the 
operation state 2z  

Considering that the ferry is in the safety state 
subsets }4,...,1,{ +uu , ,4,3,2,1=u  if all its 
subsystems are in this safety state subset, the 
considered system is a five-state series system [4] 
and the conditional safety function of the ferry while 
the ferry is at the operational state 2z  is given by  
 

   
),()2(

3 ⋅ts
 

 
  =[1, )1,()2(

3 ts , )2,()2(
3 ts , )3,()2(

3 ts , )4,()2(
3 ts ], (42) 

 
where  
 
   ),()2(

3 uts  
 
    ),()2(

1,1 uts= ),()2(
1,1,1,1,1,2,4;7 uts ),()2(

1,1,1;3 uts               (43) 

 
    for ),,0 ∞∈<t  u = 1,2,3,4,     
  
i.e.  
 

   
)1,()2(

3 ts  = 12 exp[-0.462t] + 8 exp[-0.561t]  
                 
                   -16exp[-0.495t]- 3exp[-0.594t]          (44) 
 

   
)2,()2(

3 ts
 
= 12 exp[-0.54t] + 8 exp[-0.65t]  

 
                   + 6 exp[-0.62t] - 16 exp[-0.58t]  
 
                   - 6 exp[-0.61t] - 3 exp[-0.69t],           (45)                                                                                                                    
 

   
)3,()2(

3 ts
 
= 12 exp[-0.62t] + 8 exp[-0.745t]  

 
                   + 6 exp[-0.72t] - 16 exp[-0.67t]  
 
                   - 6 exp[-0.695t] - 3 exp[-0.795t],       (46)                                                                                      
 

   
)4,()2(

3 ts
 
= 12 exp[-0.685t] + 8 exp[-0.82t]  

 
                    + 6 exp[-0.795t] - 16 exp[-0.74t]  
 
                    - 6 exp[-0.765t] - 3 exp[-0.875t].      (47)    
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The expected values and standard deviations of the 
ferry conditional lifetimes in the safety state subsets 
calculated from the above result given by (42)-(47), 

according to (7), at the operational state 2z  are:  
 
   ,86.2)1(2 ≅µ  )2(2µ ≅ 0.43 
 
   )3(2µ ≅ 2.14, )4(2µ ≅ 1.93 years,                     (48) 
                                 
   )2(2σ  ≅ 2.74, )2(2σ  ≅ 2.35,  
 
   )3(2σ  ≅ 2.05, )4(2σ  ≅ 1.85 years,                  (49)  
   
and further, using (8), it follows that the ferry 
conditional lifetimes in the particular safety states at 

the operational state 2z are:  
 
   ≅)1(2µ 0.43, )2(2µ ≅ 0.29,  
 
   )3(2µ ≅ 0.21, )4(2µ ≅ 1.93 years.                     (50) 
 
At the remaining operation states bz , 18,..,3=b  we 
proceed in an analogous way. We determined the 
system conditional safety functions in particular 
operation states and the expected values and standard 
deviations of the ferry conditional lifetimes. 
In the case when the system operation time is large 
enough, the unconditional safety function of the ferry 
is given by the vector  
 

    
),(5 ⋅ts
 

 
   = [1,

 
),1,(5 ts ),2,(5 ts ),3,(5 ts )4,(5 ts ], ,0≥t (51) 

                                             
where, according to (5) and after considering the 
values of ,bp

 
,18,...,2,1=b  given by (32), its co-

ordinates are as follows:  
 

    
),(5 uts ),(037.0 )1(

2 uts⋅= ),(002.0 )2(
3 uts⋅+

 
 

   
),(025.0 )3(

2 uts⋅+ ),(036.0 )4(
3 uts⋅+

 
 

   
),(364.0 )5(

3 uts⋅+ ),(025.0 )6(
3 uts⋅+

  
 

   
),(005.0 )7(

3 uts⋅+ ),(014.0 )8(
2 uts⋅+

 
 

   
),(037.0 )9(

2 uts⋅+ ),(002.0 )10(
3 uts⋅+

 
 

   
),(003.0 )11(

2 uts⋅+ ),(017.0 )12(
3 uts⋅+

 
 

   
),(354.0 )13(

3 uts⋅+ ),(035.0 )14(
3 uts⋅+

 
 

   
),(024.0 )15(

2 uts⋅+ ),(003.0 )16(
2 uts⋅+

 
 
   ),(004.0 )17(

3 uts⋅+ ),,(013.0 )18(
2 uts⋅+                 (52)                                                                  

 
for t ≥ 0, ,4,3,2,1=u  where ),()1(

2 uts
 
and ),()2(

3 uts  
are respectively given by (35)-(38) and (44)-(47) and 

),()( utb

bns  for ,18,...,4,3=b  are given in [12].    

 
The mean values and standard deviations of the 
system unconditional lifetimes in the safety state 
subsets, according to (6)-(7) respectively are:    
 
   )1(µ ≅ 07.2037.0 ⋅ 86.2002.0 ⋅+ 94.4025.0 ⋅+  
 
   2.4036.0 ⋅+ 2.4364.0 ⋅+ 01.4025.0 ⋅+  
 
   86.2005.0 ⋅+ 53.3014.0 ⋅+ 53.3037.0 ⋅+

  

   
86.2002.0 ⋅+ 91.3003.0 ⋅+ 2.4017.0 ⋅+  

 
   2.4354.0 ⋅+ 2.4035.0 ⋅+ 94.4024.0 ⋅+

  

   
91.3003.0 ⋅+ 86.2004.0 ⋅+ 07.2013.0 ⋅+

  
   ,07.4≅                                                                (53) 
 

   
,1.4)1( ≅σ                                                        

 

 
)2(µ ≅ 54.1037.0 ⋅ 43.2002.0 ⋅+ 9.3025.0 ⋅+  

 
   80.3036.0 ⋅+ 80.3364.0 ⋅+ 24.3025.0 ⋅+  
 

   
43.2005.0 ⋅+ 50.2014.0 ⋅+ 50.2037.0 ⋅+

  

   
43.2002.0 ⋅+ 37.3003.0 ⋅+ 80.3017.0 ⋅+

  
   80.3354.0 ⋅+ 80.3035.0 ⋅+ 90.3024.0 ⋅+  
 
   37.3003.0 ⋅+ 43.2004.0 ⋅+  ,59.3≅                   (54) 
 
   ,34.3)2( ≅σ

  

   
)3(µ ≅ 32.1037.0 ⋅ 14.2002.0 ⋅+ 44.3025.0 ⋅+    

 
   38.3036.0 ⋅+ 38.3364.0 ⋅+ 88.2025.0 ⋅+  
 

   
14.2005.0 ⋅+ 17.2014.0 ⋅+ 17.2037.0 ⋅+

  

   
14.2002.0 ⋅+ 07.3003.0 ⋅+ 38.3017.0 ⋅+
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38.3354.0 ⋅+ 38.3035.0 ⋅+ 44.3024.0 ⋅+

  

   
07.3003.0 ⋅+ 14.2004.0 ⋅+ 32.1013.0 ⋅+

  
   ,19.3≅                                                                (55) 
 
    ,65.3)3( ≅σ

  

   
)4(µ ≅ 09.1037.0 ⋅ 93.1002.0 ⋅+ 1.3025.0 ⋅+  

 
   05.3036.0 ⋅+ 05.3364.0 ⋅+ 61.2025.0 ⋅+  
 

   
93.1005.0 ⋅+ 92.1014.0 ⋅+ 92.1037.0 ⋅+

  

   
93.1002.0 ⋅+ 76.2003.0 ⋅+ 05.3017.0 ⋅+

  

   
05.3354.0 ⋅+ 05.3035.0 ⋅+ 10.3024.0 ⋅+

  

   
76.2003.0 ⋅+ 93.1004.0 ⋅+ 09.1013.0 ⋅+

  
   ,87.2≅                                                                (56) 
 
   .75.2)4( ≅σ  

 
The mean values of the system lifetimes in the 
particular safety states, by (8), are  
 
   ,48.0)2()1()1( =−= µµµ  
 
   ,4.0)3()2()2( =−= µµµ  
 
   ,32.0)4()3()3( =−= µµµ   
 
   .87.2)4()4( == µµ                                            (57) 
 
If the critical safety state is r = 2, then the system 
risk function, according to (9) [6] , is given by  
 
   r(t)= )2,(1 5 ts−

 
 

   
)2,(037.0[1 )1(

2 ts⋅−= )2,(002.0 )2(
3 ts⋅+

 
 

   
)2,(025.0 )3(

2 ts⋅+ )2,(036.0 )4(
3 ts⋅+

 
 

   
)2,(364.0 )5(

3 ts⋅+ )2,(025.0 )6(
3 ts⋅+

 
 

   
)2,(005.0 )7(

3 ts⋅+ )2,(014.0 )8(
2 ts⋅+

    
 

   
)2,(037.0 )9(

2 ts⋅+ )2,(002.0 )10(
3 ts⋅+

 
 

   
)2,(003.0 )11(

2 ts⋅+ )2,(017.0 )12(
3 ts⋅+

 
 

   
)2,(354.0 )13(

3 ts⋅+ )2,(035.0 )14(
3 ts⋅+

 
 

   
)2,(024.0 )15(

2 ts⋅+ )2,(003.0 )16(
2 ts⋅+

   
 
   )2,(004.0 )17(

3 ts⋅+ )]2,(013.0 )18(
2 ts⋅+                 (58) 

 
   for t ≥ 0.

  
Hence, the moment when the system risk function 
exceeds a permitted level, for instance δ  = 0.05, 
from (10), is  
 
   τ = r−1(δ) ≅ 0.19 years.                                        (59) 
 
5. Optimization of the ferry technical system 
operation process 

In this case, as the critical state is 2=r , then 
considering the expression for )2(µ  in (54), the 
objective function (11), takes the form  
 

   )2(µ 54.11⋅= p 43.22 ⋅+ p 90.33 ⋅+ p    
 
   80.34 ⋅+ p 80.35 ⋅+ p 24.36 ⋅+ p  
    
    43.27 ⋅+ p 50.28 ⋅+ p 50.29 ⋅+ p  
 
   43.210⋅+ p 37.311 ⋅+ p 80.312 ⋅+ p  
 
   80.313⋅+ p 80.314 ⋅+ p 90.315⋅+ p  
 
   37.316 ⋅+ p 43.217 ⋅+ p .54.118⋅+ p                     (60) 
 
The lower bp

(
 and upper bp

)
 bounds of the unknown 

transient probabilities bp , ,18,...,2,1=b  coming 

from experts, respectively are [7]: 
 

  0006.01 =p
(

, ,001.02 =p
(

 ,018.03 =p
(

,  
 

   ,027.04 =p
(

,286.05 =p
(

  ,018.06 =p
(

 
 

   ,002.07 =p
(

 ,001.08 =p
(

 ,001.09 =p
(

  
 

   ,001.010 =p
(

 ,002.011 =p
(

,013.012 =p
(

  
 

   ,286.013 =p
(

 ,025.014 =p
(

 ,018.015 =p
(

  
 

   ,002.016 =p
(

 ,002.017 =p
(

 ,001.018 =p
(
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   ,056.01 =p
)

 ,002.02 =p
)

 ,027.03 =p
)

  
 

   ,056.04 =p
)

,780.05 =p
)

,024.06 =p
)

 
 

   ,018.07 =p
)

,018.08 =p
)

,056.09 =p
)

  
 

   ,003.010 =p
)

,004.011 =p
)

,024.012 =p
)

 
 

   ,780.013 =p
)

,043.014 =p
)

,024.015 =p
)

 
 

   ,004.016 =p
)

,007.017 =p
)

018.018 =p
)

. 
 
Therefore, according to (12)-(13), we assume the 
following bound constraints  
 

   ∑ =
=

18

1
,1

b
bp                                                             (61) 

 
,056.00006.0 1 ≤≤ p  ,002.0001.0 2 ≤≤ p   

 
,027.0018.0 3 ≤≤ p  ,056.0027.0 4 ≤≤ p  

 
,780.0286.0 5 ≤≤ p  ,024.0018.0 6 ≤≤ p   

 
,018.0002.0 7 ≤≤ p ,018.0001.0 8 ≤≤ p    

 
,056.0001.0 9 ≤≤ p  ,003.0001.0 10 ≤≤ p  

 
,004.0002.0 11 ≤≤ p  ,024.0013.0 12 ≤≤ p   

 
,780.0286.0 13 ≤≤ p ,043.0025.0 14 ≤≤ p    

 
,024.0018.0 15 ≤≤ p  ,004.0002.0 16 ≤≤ p  

 
,007.0002.0 17 ≤≤ p .018.0001.0 18 ≤≤ p             (62) 

 
Now, before we find optimal values bp&  of the 

transient probabilities ,bp  ,18,...,2,1=b  that 

maximize the objective function (60), we arrange the 
system conditional lifetimes mean values ),2(bµ  

,18,...,2,1=b  in non-increasing order  
 

   ≥)2(3µ ≥)2(15µ ≥)2(4µ ≥)2(5µ ≥)2(12µ  
 

   ≥)2(13µ ≥)2(14µ ≥)2(11µ ≥)2(16µ ≥)2(6µ  
 

   ≥)2(8µ ≥)2(9µ ≥)2(2µ ≥)2(7µ ≥)2(10µ  
 

   ≥)2(17µ ≥)2(1µ ).2(18µ  
 

Next, according to (14),  we substitute  
 

   ,025.031 == px ,024.0152 == px     
    
   ,036.043 == px ,364.054 == px   
 

   ,017.0125 == px ,354.0136 == px  
 

   ,035.0147 == px ,00.0118 == px  
 

   ,003.0169 == px ,025.0610 == px  
 

   ,014.0811 == px ,037.0912 == px  
 

   ,002.0213 == px ,005.0714 == px  
 

   ,002.01015 == px ,004.01716 == px  
 

   ,037.0117 == px ,013.01818 == px                (63) 
 
and  
 

   ,018.01 =x
(

,018.02 =x
(

,027.03 =x
(

 
 

   ,286.04 =x
(

,013.05 =x
(

,286.06 =x
(

 
 

   ,025.07 =x
(

,002.08 =x
(

,002.09 =x
(

 
 

   ,018.010 =x
(

,001.011 =x
(

,001.012 =x
(

 
 

   ,001.013 =x
(

,002.014 =x
(

,001.015 =x
(

 
 

   ,002.016 =x
(

,0006.017 =x
(

,001.018 =x
(

 
 
   ,027.01 =x

)
,024.02 =x

)
,056.03 =x

)
 

 
   ,780.04 =x

)
,024.05 =x

)
,780.06 =x

)
 

 
   ,043.07 =x

)
,004.08 =x

)
,004.09 =x

)
 

 
   ,024.010 =x

)
,018.011 =x

)
,056.012 =x

)
 

 
   ,002.013 =x

)
,018.014 =x

)
,003.015 =x

)  
 
   ,007.016 =x

)
,056.017 =x

)
,018.018 =x

)                (64) 
 
where ix

(
 and ix

)
 are lower and upper bounds of the 

unknown limit transient probabilities ix , 

,18,...,2,1=i  respectively and we maximize with 
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respect to ,ix  ,18,...,2,1=i  the linear form (60) that 

according to (15) takes the form  
 
   )2(µ = +⋅ 90.31x +⋅ 90.32x 80.33 ⋅x  
 
           +⋅+ 80.34x +⋅ 80.35x 80.36 ⋅x  
 
           80.37 ⋅+ x +⋅+ 37.38x 37.39 ⋅x  
 
           +⋅+ 24.310x +⋅ 50.211x 50.212 ⋅x  
 
           +⋅+ 43.213x 43.214 ⋅x 43.215 ⋅+ x  
 
           +⋅+ 43.216x  +⋅ 54.117x 54.118 ⋅x ,           (65) 
 
with the following bound constraints 
 

    ∑ =
=

18

1
,1

i
ix                                                            (66) 

 
   ,027.0018.0 1 ≤≤ x ,024.0018.0 2 ≤≤ x  
 
   ,056.0027.0 3 ≤≤ x ,780.0286.0 4 ≤≤ x  
 
   ,024.0013.0 5 ≤≤ x ,780.0286.0 6 ≤≤ x  
 
   ,043.0025.0 7 ≤≤ x ,004.0002.0 8 ≤≤ x  
 
   ,004.0002.0 9 ≤≤ x ,024.0018.0 10 ≤≤ x  
 
   ,018.0001.0 11 ≤≤ x ,056.0001.0 12 ≤≤ x  
 
   ,002.0001.0 13 ≤≤ x ,018.0002.0 14 ≤≤ x  
 
   ,003.0001.0 15 ≤≤ x ,007.0002.0 16 ≤≤ x  
 
   ,056.00006.0 17 ≤≤ x ,018.0001.0 18 ≤≤ x       (67) 
 
According to (18), we find  
 

∑ ==
=

18

1
,705.0

i
ixx
((

xy
(−= 1ˆ  = 1 - 0.705 = 0.295  (68) 

 
and according to (19), we find   
 

   ,00 =x
(

 00 =x
)

,  ,000 =− xx
()

 
 
   018.01 =x

(
 ,027.01 =x
)

 009.011 =− xx
()

    
                 
   018.02 =x

(
 ,024.02 =x
)

 ,006.022 =− xx
()

    

  
   027.03 =x

(
 ,056.03 =x
)

 ,029.033 =− xx
()

 
 
   286.04 =x

(
 ,78.04 =x
)

 ,494.044 =− xx
()

 
   . 
   . 
   . 
   001.018 =x

(
 ,018.018 =x
)

 .017.01818 =− xx
()

    (69) 
 
From the above, as according to (68), the inequality 
(20) takes the form  
 
   295.0<− II xx

()
,                                               (70) 

 
then it follows that the largest value }18,...,1,0{∈I  

such that this inequality holds is .4=I  
Therefore, we fix the optimal solution that maximize 
linear function (65) according to the rule (22). 
Namely, we get  
 
   11 xx

)
& = 027.0= ,  

 
   22 xx

)
& = 024.0= ,  

 
   33 xx

)
& = 056.0= ,  

 
   4

33
4

ˆ xxxyx
(()

& ++−=  
 
       ,552.0286.0027.0056.0295.0 =++−=     (71) 
 
   55 xx

(
& = 013.0= , 66 xx

(
& = ,286.0=       

    
   77 xx

(
& = ,025.0= 88 xx

(
& = ,002.0=  

 
   99 xx

(
& = ,002.0= 1010 xx

(
& = ,018.0=  

 
    1111 xx

(
& = ,001.0= 1212 xx

(
& = ,001.0=  

 
    1313 xx

(
& = ,001.0= 1414 xx

(
& = ,002.0=  

 
    1515 xx

(
& = ,001.0= 1616 xx

(
& = ,002.0=  

 
   1717 xx

(
& = ,0006.0= 1818 xx

(
& = .001.0=               (72) 

 
Finally, according to (24) after making the inverse to 
(63) substitution, we get the optimal transient 
probabilities  
 
   13 xp && = 027.0= , 215 xp && = 024.0= , 
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   34 xp && = 056.0= ,  45 xp && =  ,552.0=   
 
   512 xp && = 013.0= , 613 xp && = ,286.0=   
 
   714 xp && = ,025.0=  811 xp && = ,002.0=     
 
   916 xp && = ,002.0=  106 xp && = ,018.0=  
 
   118 xp && = ,001.0=  129 xp && = ,001.0=    
 
   132 xp && = ,001.0=  147 xp && = ,002.0=    
 
   1510 xp && = ,001.0=  1617 xp && = ,002.0=    

 
   171 xp && = ,0006.0=  1818 xp && = ,001.0=               (73) 
 
that maximize the system mean lifetime in the safety 
state subset }4,3,2{  expressed by the linear form (60) 
giving, according to (15) and (73), its optimal value  
 
   )2(µ& ≅ 54.11 ⋅p& 43.22 ⋅+ p& 90.33 ⋅+ p&  
 
           80.34 ⋅+ p& 80.35 ⋅+ p& 24.36 ⋅+ p&  
 

          
43.27 ⋅+ p& 50.28 ⋅+ p& 50.29 ⋅+ p&

  

          
43.210 ⋅+ p& 37.311 ⋅+ p& 80.312 ⋅+ p&

  

         
80.313 ⋅+ p& 80.314 ⋅+ p& 90.315 ⋅+ p&

  

         
37.316 ⋅+ p& 43.217 ⋅+ p& 54.118 ⋅+ p&

  
         = +⋅ 54.10006.0 43.2001.0 ⋅  
 
         +⋅+ 90.3027.0 80.3056.0 ⋅  
 
         80.3552.0 ⋅+ 24.3018.0 ⋅+  
 
         +⋅+ 43.2002.0 50.2001.0 ⋅  
 
         +⋅+ 50.2001.0 43.2001.0 ⋅  
 

        
+⋅+ 37.3002.0 80.3013.0 ⋅

  

        
+⋅+ 80.3286.0 80.3025.0 ⋅

  
       90.3024.0 ⋅+ 37.3002.0 ⋅+  
 
       +⋅+ 43.2002.0 =⋅ 54.1001.0 3.83                (74) 
 

6. Optimal safety characteristics of the ferry 
technical system 

Further, substituting the optimal solution (73) into 
the formulae (26), we obtain the optimal solution for 
the mean value of the system unconditional lifetime 
in the safety state subset },4,3,2,1{  }4,3{  and }4{  
that respectively amounts: 
 

)1(µ& ≅ 4.28,  )3(µ& ≅ 3.41, )4(µ& ≅ 3.08,               (75) 
 
and according to (29), the optimal solutions for the 
mean values of the system unconditional lifetimes in 
the particular safety states  
 

,45.0)1( ≅µ&  ,42.0)2( ≅µ&   
 

,33.0)3( ≅µ& .08.3)1( ≅µ&                                      (76) 
 
Moreover, according to (27)-(28) and (51)-(52), the 
corresponding optimal unconditional multistate 
safety function of the system is of the form   
 

   
),(5 ⋅ts&  =  

 
   [1,

 
)1,(5 ts& , )2,(5 ts& , )3,(5 ts& , )4,(5 ts& ]                (77) 

 
   for ,0≥t         
                                           
where according to (5) and after considering the 
values of bp  given by (73), its co-ordinates are as 

follows:  
 

   
),(5 uts& ≅ ),(0006.0 )1(

2 uts⋅
 

),(001.0 )2(
3 uts⋅+

 
 

                
),(027.0 )3(

2 uts⋅+
 

),(056.0 )4(
3 uts⋅+

 
 

                
),(552.0 )5(

3 uts⋅+ ),(018.0 )6(
3 uts⋅+

     
 

                
),(002.0 )7(

3 uts⋅+
 

),(001.0 )8(
2 uts⋅+

  
 

                
),(001.0 )9(

2 uts⋅+ ),(001.0 )10(
3 uts⋅+

    
 

                
),(001.0 )11(

2 uts⋅+
 

),(013.0 )12(
3 uts⋅+

  
 

                
),(286.0 )13(

3 uts⋅+ ),(025.0 )14(
3 uts⋅+

     
 

                
),(024.0 )15(

2 uts⋅+ ),(002.0 )16(
2 uts⋅+

  
 
                ),(002.0 )17(

3 uts⋅+ ),(001.0 )18(
2 uts⋅+    (78) 
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for ,0≥t
 

,4,3,2,1=u  where ),()1(
2 uts

 
and ),()2(

3 uts  
are respectively given by (35)-(38) and (44)-(47) and 

),()( utb

bns  for ,18,...,4,3=b  are given in [12].  

If the critical safety state is r = 2, then the system 
risk function, according to (30), is given by  
 

   )(tr&  = )2,(1 5 ts&−  for t ≥ 0,                              (79) 
                                                                                             
where )2,(5 ts&

 
is given by (78) for 2=u .  

Hence, considering (31), the moment when the 
optimal system risk function exceeds a permitted 
level, for instance δ  = 0.05, is  
 

   τ& = )(δ-1r&  ≅  0.25 years.                                  (80) 
 
Comparing the ferry safety characteristics after its 
operation process optimization given by (74)-(79) 
with the corresponding characteristics before this 
optimization determined by (52)-(59) justifies the 
sensibility of this action.                                                                                                               
 
7. Conclusion 

The joint model of safety of complex technical 
systems in variable operation conditions linking a 
semi-markov modeling of the system operation 
processes with a multi-state approach to system 
safety analysis was constructed. Next, the final 
results obtained from this joint model and a linear 
programming were used to build the model of 
complex technical systems safety optimization. 
These tools can be useful in safety evaluation and 
optimization of a very wide class of real technical 
systems operating in varying conditions that have an 
influence on changing their safety structures and 
their components safety characteristics. These tools 
practical application to safety and risk evaluation and 
optimization of a technical system of a ferry 
operating in variable operation conditions at the 
Baltic Sea waters and the results achieved are 
interesting for safety practitioners from maritime 
transport industry and from other industrial sectors as 
well.       
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