PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Perspective of sol-gel hydrophobic silica deposited using low-pressure cold spray and ultrasonic atomizing for automotive coatings

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Perspektywa wytwarzania zol-żelowych powłok hydrofobowych nanoszonych z użyciem niskociśnieniowego natryskiwania na zimno i atomizowania ultradźwiękowego dla branży motoryzacyjnej
Języki publikacji
EN
Abstrakty
EN
The automotive sector is under constant pressure to minimize fuel consumption and reduce pollution emissions while maintaining a declining tendency for weight and cost reduction. This makes the material selection process a major of engineering design considerations. In the paper, the main automotive requirements were formulated to analyze the potential of selected deposition (low pressure cold spray and ultrasonic atomizing) and material fabrication (sol-gel method) techniques for application in the automotive industry.
PL
Sektor motoryzacyjny znajduje się pod ciągłą presją, aby minimalizować zużycie paliwa i redukować emisję zanieczyszczeń przy jednoczesnym utrzymaniu dotychczasowego tempa redukcji masy i kosztów. To sprawia, że dobór materiału jest szczególnie ważny podczas procesu projektowania wybranego elementu. W artykule sformułowano główne wymagania branży automotive do analizy potencjału wybranych technik osadzania (niskociśnieniowego natryskiwania na zimno i atomizacji ultradźwiękowej) oraz wytwarzania materiału (metoda zol-żel) do zastosowań jako powłoki ochronne w przemyśle samochodowym.
Rocznik
Strony
113--128
Opis fizyczny
Bibliogr. 66 poz., rys., tab.
Twórcy
autor
  • Wroclaw University of Science and Technology
  • Wroclaw University of Science and Technology
Bibliografia
  • [1] GIBAS A., BASZCZUK A., GĄSIOREK J., Fabrication and Examination of Sol Gel Hydrophobic Coatings Deposited Using Low Pressure Cold Spray and Ultrasonic Atomizing, Wroclaw University of Science and Technology, 2020.
  • [2] GIBAS A., BASZCZUK A., JASIORSKI M., WINNICKI M., Prospects of Low-Pressure Cold Spray for Superhydrophobic Coatings. Coatings, 2019, 9 (12), 829; DOI:10.3390/coatings9120829.
  • [3] GIBAS A., GNYCH M., Tlenkowe Materiały Proszkowe Otrzymywane Metodą Zol-Żel jako Atrakcyjny Substrat Do Nanoszenia Powłok Techniką Niskociśnieniowego Natryskiwania Na Zimno., Nowoczesne technologie XXI w. – przegląd, trendy i badania. Tom 1; DANIELEWSKA A., MACIĄG M., Eds.; Wydawnictwo Naukowe TYGIEL sp. z o.o.: Lublin, 2019; pp 118-137.
  • [4] GIBAS A., BASZCZUK A., JASIORSKI M., WINNICKI M., Hydrophobic Coatings by Low Pressure Cold Spray, International Sol-Gel Conference. Next generation: book of abstracts, St. Petersburg, 2019, 405.
  • [5] GIBAS A., GĄSIOREK J., Ultrasonic Atomizing as a Feasible Method of Sol-Gel Coatings Fabrication, 7th ISGS Online Summer School: “Hybrid Materials: cutting-edge applications”, 2020.
  • [6] ASHBY M. F., Materials Selection in Mechanical Design, Lecture Notes in Mechanical Engineering; 2014, Vol. 16, pp 145-153; DOI:10.1007/978-3-319-05203-8_21.
  • [7] ODUORI M. F., PH D., Materials Selection in Engineering Design and Manufacturing – Concept of an Information Processing Approach, Assoc. Profr. Dep. Mech. Manuf. Eng. Univ. Nairobi, P.O. Box 30197, Nairobi, KENYA, 2016, No. January 2001, 1-14.
  • [8] WILHELM M., Materials Used in Automobile Manufacture - Current State and Perspectives. J. PHYS. IV Colloq., 1993, 03 (7); DOI:10.1051/jp4:1993703f.
  • [9] ŁUCZAK M., MAŁYS Ł., Współczesne Koncepcje i Trendy w Branży Motoryzacyjnej; Poznań, 2016.
  • [10] TURNER J. W. G., POPPLEWELL A., PATEL R., JOHNSON T. R., DARNTON N. J., RICHARDSON S., BREDDA S. W., TUDOR R. J., BITHELL C. I., JACKSON R., et al. Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing, SAE Int. J. ENGINES, 2014, 7 (1), 387-417; DOI:10.4271/2014-01-1185.
  • [11] Environmental Protection Agency, Delivering Change – Preventing And Recycling Waste, 2002.
  • [12] https://www.idis2.com (accessed: 10.01.2020)
  • [13] Council of the European Union. Council Directive 91/689/EEC of 12 December 1991 on Hazardous Waste.
  • [14] KONSTANDOPOULOS A. G., KOSTOGLOU M., BEATRICE C., DI BLASIO G., IMREN A., DENBRATT I., Impact of Combination of EGR, SCR, and DPF Technologies for the Low-Emission Rail Diesel Engines, Emiss. Control Sci. Technol., 2015, 1 (3), 213-225; DOI:10.1007/s40825-015-0020-0.
  • [15] HOVORUN T. P., BERLADIR K. V., PERERVA V. I., RUDENKO S. G., MARTYNOV A. I., Modern Materials for Automotive Industry, J. Eng. Sci., 2017, 4 (2), f8-f18; DOI:10.21272/jes.2017.4(2).f8.
  • [16] STALEY J. T., LEGE D. J., Advances in Aluminium Alloy Products for Structural Applications i Transportation, Le J. Phys. IV, 1993, 03 (C7), C7-179-C7-190; DOI:10.1051/jp4:1993728.
  • [17] KRZAK J., SZCZUREK A., BABIARCZUK B., GĄSIOREK J., BORAK B., Sol–Gel Surface Functionalization Regardless of Form and Type of Substrate, 2020, DOI:10.1016/b978-0-12-821381-0.00005-3.
  • [18] ZHAO Y., JIN W., Steel Corrosion in Concrete, Steel Corrosion-Induced Concrete Cracking, Elsevier, 2016, pp 19-29; DOI:10.1016/B978-0-12-809197-5.00002-5.
  • [19] Boag A., Hughes A. E., Wilson N. C., Torpy A., Macrae C. M., Glenn A. M., Muster T. H., How Complex Is the Microstructure of AA2024-T3? Corros. Sci., 2009, 51 (8), 1565-1568; DOI:10.1016/j.corsci.2009.05.001
  • [20] AKAFUAH N. K., POOZESH S., SALAIMEH A., PATRICK G., LAWLER K., SAITO K., Evolution of the Automotive Body Coating Process-A Review. Coatings, 2016, 6 (2), DOI:10.3390/coatings6020024.
  • [21] MAEV R. G., LESHCHYNSKY V., Low-Pressure Cold Spray (LPCS), Cold-Spray Coatings; Springer International Publishing: Cham, 2018, 95-142, DOI:10.1007/978-3-319-67183-3_4.
  • [22] ASSADI H., SCHMIDT T., RICHTER H., KLIEMANN J.-O., BINDER K., GÄRTNER F., KLASSEN T., KREYE H., On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20 (6), 1161-1176; DOI:10.1007/s11666-011-9662-9
  • [23] MORIDI A., HASSANI-GANGARAJ S. M., GUAGLIANO M., DAO M., Cold Spray Coating: Review of Material Systems and Future Perspectives, Surf. Eng., 2014, 36 (6), 369-395, DOI:10.1179/1743294414Y.0000000270.
  • [24] PAPYRIN A., Cold Spray Technology. Adv. Mater. Process., 2001, 159 (9), 49-51.
  • [25] MAŁACHOWSKA A., WINNICKI M., AMBROZIAK A., Prospects of Low Pressure Cold Spray, Przegląd Spaw., 2012, 84 (10), 2-6.
  • [26] YIN S., CHEN C., SUO X., LUPOI R., Cold-Sprayed Metal Coatings with Nanostructure, Adv. Mater. Sci. Eng., 2018; DOI:10.1155/2018/2804576.
  • [27] WINNICKI M., Właściwości Powłok Cynowych i Miedzianych Naniesionych Na Podłoże Aluminiowe Metodą Niskociśnieniowego Natryskiwania Na Zimno, Wroclaw University of Science and Technology, 2015.
  • [28] YAMADA M., KANDORI Y., SATO K., FUKUMOTO M., Fabrication of Titanium Dioxide Photocatalyst Coatings by Cold Spray, J. Solid Mech. Mater. Eng., 2009, 3 (2), 210-216; DOI:10.1299/jmmp.3.210.
  • [29] ASTARITA A., COTICELLI F., PRISCO U., Repairing of an Engine Block through the Cold Gas Dynamic Spray Technology. Mater. Res., 2016, 19 (6), 1226-1231; DOI:10.1590/1980-5373-MR-2016-0109.
  • [30] RAOELISON R. N., VERDY C., LIAO H., Cold Gas Dynamic Spray Additive Manufacturing Today: Deposit Possibilities, Technological Solutions and Viable Applications. Mater. Des., 2017, 133 (July), 266-287; DOI:10.1016/j.matdes.2017.07.067.
  • [31] NII S., Ultrasonic Atomization, Handb. Ultrason. Sonochemistry, 2015, 1-19, DOI:10.1007/978-981-287-470-2_7-1.
  • [32] GOGATE P. R., The Use of Ultrasonic Atomization for Encapsulation and Other Processes in Food and Pharmaceutical Manufacturing. in Power Ultrasonics; Elsevier, 2015, 911-935; DOI:10.1016/B978-1-78242-028-6.00030-2.
  • [33] https://www.sono-tek.com/industry/glass-industrial/automotive/ (accessed: 12.05.2020)
  • [34] http://hardcoats.ru/en/ (accessed:14.05 2020)
  • [35] AROLE V. M., MUNDE S. V., Fabrication of Nanomaterials by Top-down and Bottom-up Approaches-an Overview, Jaastmaterial Sci. (Special Issue), 2014, 1 (2), 89-93.
  • [36] CUSHING B. L., KOLESNICHENKO V. L., O’CONNOR C. J., Recent Advances in the Liquid Phase Syntheses of Inorganic Nanoparticles. Chem. Rev., 2004, 104 (9), 3893-3946, DOI:10.1021/cr030027b.
  • [37] SMAGIEŁ D., Synthesis and Mechanical Tests of sio2-Based Coatings Applied by Atomizing the Hydrolyzate at Frequencies above 50khz with High Selectivity of Particle Size, Wroclaw University of Science and Technology, 2018.
  • [38] https://straitsresearch.com/press-release/automotive-sector-to-drive-growth-of-sol-gel-coatings-market (accessed:25.05 2021)
  • [39] NARULA C. K., Sol-Gel Processed Materials in the Automotive Industry. ACS Symp. Ser., 1999, 727, 144-156; DOI:10.1021/bk-1999-0727.ch011.
  • [40] ULLATTIL S. G., PERIYAT P., Sol-Gel Synthesis of Titanium Dioxide, Sol-Gel Materials for Energy, Environment and Electronic Applications; 2017, 271-283, DOI:10.1007/978-3-319-50144-4_9.
  • [41] FRANCIOSO L., PRESICCE D. S., TAURINO A. M., RELLA R., SICILIANO P., FICARELLA A., Automotive Application of Sol-Gel tio2 Thin Film-Based Sensor for Lambda Measurement. Sensors Actuators B Chem., 2003, 95 (1-3), 66-72; DOI:10.1016/S0925-4005(03)00405-2.
  • [42] ÇAMURLU H., KESMEZ Ö., BURUNKAYA E., KIRAZ N., YEŞIL Z., ASILTÜRK M., ARPAÇ E., Sol-Gel Thin Films with Anti-Reflective and Self-Cleaning Properties, Chem. Pap., 2012, 66 (5); DOI:10.2478/s11696-0120144-4.
  • [43] WU Y., SHEN Y., TAO J., HE Z., XIE Y., CHEN H., JIN M., HOU W., Facile Spraying Fabrication of Highly Flexible and Mechanically Robust Superhydrophobic F-sio 2 @PDMS Coatings for Self-Cleaning and Drag Reduction Applications. New J. Chem., 2018, 42 (22), 18208-18216; DOI:10.1039/c8nj04275f.
  • [44] CHIENG B. W., IBRAHIM N. A., DAUD N. A., TALIB Z. A., Functionalization of Graphene Oxide via Gamma-Ray Irradiation for Hydrophobic Materials; Elsevier Inc., 2018, DOI:10.1016/B978-0-12-815757-2.00008-5.
  • [45] SI Y., DONG Z., JIANG L., Bioinspired Designs of Superhydrophobic and Superhydrophilic Materials, ACS Cent. Sci., 2018, 4 (9), 1102-1112, DOI:10.1021/acscentsci.8b00504.
  • [46] GĄSIOREK J., Physicochemical and Mechanical Characterization of Protective Coatings Type “Easy-to-Clean”, Obtained by the Sol-Gel Method on Metallic Substrates, Wroclaw University of Science and Technology, 2014.
  • [47] https://igcseandialchemistry.com/electronegativity-and-bond-polarity/ (accessed: 04.07.2020)
  • [48] LI L., LI B., DONG J., ZHANG J., Roles of Silanes and Silicones in Forming Superhydrophobic and Superoleophobic Materials, J. Mater. Chem. A, 2016, 4 (36), 13677-13725, DOI:10.1039/c6ta05441b.
  • [49] RAVI K., SULEN W. L., BERNARD C., ICHIKAWA Y., OGAWA K., Fabrication of Micro/Nano-Structured Super-Hydrophobic Fluorinated Polymer Coatings by Cold-Spray. Surf. Coatings Technol., 2019, 373 (May), 17 24, DOI:10.1016/j.surfcoat.2019.05.078.
  • [50] LOCK SULEN W., RAVI K., BERNARD C., ICHIKAWA Y., OGAWA K., Deposition Mechanism Analysis of Cold-Sprayed Fluoropolymer Coatings and Its Wettability Evaluation. J. Therm. Spray Technol., 2020, DOI:10.1007/s11666-020-01059-w.
  • [51] CALABRESE L., KHASKHOUSSI A., PATANE S., PROVERBIO E., Assessment of Super-Hydrophobic Textured Coatings on AA6082 Aluminum Alloy. Coatings, 2019, 9 (6), 352; DOI:10.3390/coatings9060352.
  • [52] WENZEL R. N., RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Ind. Eng. Chem., 1936, 28 (8), 988-994; DOI:10.1021/ie50320a024.
  • [53] CASSIE A. B. D., BAXTER S., Wettability of Porous Surfaces. Trans. Faraday Soc., 1944, 40, 546; DOI:10.1039/tf9444000546.
  • [54] CASSIE A. B. D., Contact Angles. Discuss. Faraday Soc., 1948, 3, 11; DOI:10.1039/df9480300011.
  • [55] FLEMING R. A., ZOU M., Silica Nanoparticle-Based Films on Titanium Substrates with Long-Term Superhydrophilic and Superhydrophobic Stability. Appl. Surf. Sci., 2013, 280, 820-827; DOI:10.1016/j.apsusc.2013.05.068.
  • [56] MICHAEL N., BHUSHAN B., Hierarchical Roughness Makes Superhydrophobic States Stable. Microelectron. Eng., 2007, 84 (3), 382-386, DOI:10.1016/j.mee.2006.10.054.
  • [57] NOSONOVSKY M., BHUSHAN B., Hierarchical Roughness Optimization for Biomimetic Superhydrophobic Surfaces. Ultramicroscopy, 2007, 107 (10-11), 969-979, DOI:10.1016/j.ultramic.2007.04.011.
  • [58] DENG X., MAMMEN L., ZHAO Y., LELLIG P., MÜLLEN K., LI C., BUTT H. J., VOLLMER D., Transparent, Thermally Stable and Mechanically Robust Superhydrophobic Surfaces Made from Porous Silica Capsules. Adv. Mater., 2011, 23 (26), 2962-2965; DOI:10.1002/adma.201100410.
  • [59] WANG N., XIONG D., DENG Y., SHI Y., WANG K., Mechanically Robust Superhydrophobic Steel Surface with Anti-Icing, UV-Durability, and Corrosion Resistance Properties. ACS Appl. Mater. Interfaces, 2015, 7 (11), 6260-6272; DOI:10.1021/acsami.5b00558.
  • [60] LATTHE S. S., SUDHAGAR P., DEVADOSS A., KUMAR A. M., LIU S., TERASHIMA C., NAKATA K., FUJISHIMA A. A., Mechanically Bendable Superhydrophobic Steel Surface with Self-Cleaning and Corrosion-Resistant Properties. J. Mater. Chem. A, 2015, 3 (27), 14263-14271, DOI:10.1039/C5TA02604K.
  • [61] BARTHLOTT W., NEINHUIS C., Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta, 1997, 202 (1), 1-8, DOI:10.1007/s004250050096.
  • [62] LU H., ZHENG Y., YIN W., TAO D., PESIKA N., MENG Y., TIAN Y., Propulsion Principles of Water Striders in Sculling Forward through Shadow Method. J. Bionic Eng., 2018, 15 (3), 516-525; DOI:10.1007/s42235-018-0042-8.
  • [63] ZHENG S., LI C., FU Q., XIANG T., HU W., WANG J., DING S., LIU P., CHEN Z., Fabrication of a Micro-Nanostructured Superhydrophobic Aluminum Surface with Excellent Corrosion Resistance and Anti-Icing Performance. RSC Adv., 2016, 6 (83), 79389-79400, DOI:10.1039/C6RA13447E.
  • [64] HASSANI-GANGARAJ S. M., MORIDI A., GUAGLIANO M., Critical Review of Corrosion Protection by Cold Spray Coatings. Surf. Eng., 2015, 31 (11), 803-815, DOI:10.1179/1743294415Y.0000000018.
  • [65] ZHANG D., WANG L., QIAN H., LI X., Superhydrophobic Surfaces for Corrosion Protection: A Review of Recent Progresses and Future Directions. J. Coatings Technol. Res., 2016, 13 (1), 11-29; DOI:10.1007/s11998-015-9744-6.
  • [66] GĄSIOREK J., SZCZUREK A., BABIARCZUK B., KALETA J., JONES W., KRZAK J., Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation. Materials (Basel)., 2018, 11 (2), 197; DOI:10.3390/ma11020197.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e8b7727-c475-417f-97b3-08191aa50968
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.