PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of Sparse FIR Filters with Low Group Delay

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the work is to present the method for designing sparse FIR filters with very low group delay and approximately linear-phase in the passband. Significant reduction of the group delay, e.g. several times in relation to the linear phase filter, may cause the occurrence of undesirable overshoot in the magnitude frequency response. The method proposed in this work consists of two stages. In the first stage, FIR filter with low group delay is designed using minimax constrained optimization that provides overshoot elimination. In the second stage, the same process is applied iteratively to reach sparse solution. Design examples demonstrate the effectiveness of the proposed method.
Twórcy
  • Faculty of Automatic Control, Electronics and Computer Sciences, Silesian University of Technology
Bibliografia
  • [1] H. Nazaripouya, C.-C. Chu, H. R. Pota and R. Gadh, “Battery energy storage system control for intermittency smoothing using an optimized two-stage filter,” IEEE Trans. on Sustainable Energy, vol. 9, no. 2, pp. 664-675, April 2018. DOI: 10.1109/TSTE.2017.2754478
  • [2] R. Shavelis and K. Ozols, “Design of FIR Decimation Filters with Low Group Delay for Audio Applications”, 14th Biennial Baltic Electronics Conference (BEC2014), Tallinn, Estonia, October 6-8, 2014.
  • [3] G. Apaydin, “Realization of reduced-delay finite impulse response filters for audio applications”, Digital Signal Processing vol. 20, no.3, pp. 620–629, 2010. DOI:10.1016/j.dsp.2009.08.015.
  • [4] T. Kurbiel, D. Alfsmann and H. G. Göckler, “Design of Highly Selective Quasi-Equiripple FIR Lowpass Filters with Approximately Linear Phase and Very Low Group Delay”, 16th European Signal Proces. Conf. (EUSIPCO 2008), Lausanne, August 25-29, 2008.
  • [5] M. R. Bai, Y. Lin and J. Lai, “Reduction of electronic delay in active noise control systems—a multirate signal processing approach”, Electronic vol. 111, pp. 916–924, 2002.
  • [6] X. Lai, C. Lai, and R. Zhao, “An Iterative Approach to Near-Uniform Group-Delay Error Design of FIR filters,” IEEE Signal Processing Letters, vol. 18, no. 2, pp.107-110, Feb. 2011.
  • [7] D. Babic, “Design of Narrow-band FIR Filter with Low Group Delay and Piecewise Polynomial Impulse Response”, 34th International Conference on Telecommunications and Signal Processing, Budapest, Hungary, Aug. 18-20, 2011.
  • [8] C. Wu, D. Gao, and K. L. Teo, “A direct optimization method for low group delay FIR filter design”, Signal Processing, vol. 93, no. 7, pp. 1764–1772, 2013. DOI: 10.1016/j.sigpro.2013.01.015.
  • [9] X. P. Lai, “Optimal design of nonlinear-phase FIR filters with prescribed phase error”, IEEE Trans. Signal Process, vol. 57, no. 9, pp. 3399–3410, 2009. DOI: 10.1109/TSP.2009.2021639.
  • [10] B. C. Garai, P. Das and A. K. Mishra, “Group delay reduction in FIR digital filters”, Signal Processing, vol. 91, no. 8, pp. 1812–1825, 2011. DOI: 10.1109/TSP.2009.2021639.
  • [11] C. Rusu and J. Astola, Minimum-phase parts of zero-phase sequences, Signal Processing, vol. 89, pp. 1032–1037, 2009.
  • [12] S.-C. Pei, H.-S. Lin, “Minimum-phase FIR filter design using real cepstrum”, IEEE Trans. Circuits and Systems II: Express Briefs, vol. 53, no 10, 2006, pp. 1113–1117.
  • [13] W.-S. Lu and T. Hinamoto, “Digital filters with sparse coefficients,” in Proc. IEEE Int. Symp. Circuits Syst., Paris, France, May 2010, pp. 169–172.
  • [14] C. Rusu and B. Dumitrescu, “Iterative reweighted l₁ design of sparse FIR filters,” Signal Process., vol. 92, no. 4, pp. 905–911, Apr. 2012. DOI: 10.1016/j.sigpro.2011.09.031.
  • [15] Y. Yang, W.-P. Zhu, and D. Wu, “Design of sparse FIR filters based on reweighted l₁-norm minimization,” in Proc. IEEE Int. Conf. Digit. Signal Process. (DSP), Jul. 2015, pp. 858–862.
  • [16] A. Jiang, H. K. Kwan, Y. Zhu, X. Liu, N. Xu, and X. Yao, “Peak-error constrained sparse FIR filter design using iterative l₁ optimization,” in Proc. 24th Eur. Signal Process. Conf. (EUSIPCO), Aug. 2016, pp. 180–184.
  • [17] L. Zheng, A. Jiang, and H. K. Kwan, “Sparse FIR filter design via partial l₁ optimization,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2017, pp. 1–4.
  • [18] A. Jiang, H. K. Kwan, Y. Tang, and Y. Zhu, “Sparse FIR filter design via partial 1-norm optimization,” IEEE Transactions on Circuits and Systems II: Express Briefs, 2019. DOI: 10.1109/TCSII.2019.2937343
  • [19] W. Chen , M. Huang , W. Ye, and X. Lou, “Cascaded Form Sparse FIR Filter Design”, IEEE Transactions on Circuits and Systems–I: Regular Papers, vol. 67, no. 5, pp. 1692-1703, May 2020. DOI: 10.1109/TCSI.2020.2964568.
  • [20] W. Chen, M. Huang, and X. Lou, “A branch-and-bound algorithm with reduced search space for sparse filter design,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Oct. 2018, pp. 329–332.
  • [21] W. Nakamoto, T. Itani and K. Konishi “Optimal Least-Squares Design of Sparse FIR Filters for Big-Data Signal Processing,” IEEE 23rd Inter. Conf. od Digital Signal Processing, Shanghai, China, 19-21 Nov. 2018.
  • [22] R. Raju, H. K. Kwan, and A. Jiang, “Sparse FIR Filter Design Using Artificial Bee Colony Algorithm”, 61st IEEE International Midwest Symposium on Circuits and Systems, Windsor, July 2018. DOI: 10.1109/MWSCAS.2018.8624036.
  • [23] T. Baran, D. Wei, A. V. Oppenheim, and L. Fellow, “Linear programming algorithms for sparse filter design”, IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1605–1617 , 2010. DOI: 10.1109/TSP.2009.2036471.
  • [24] W. Ye and Y.J. Yu, “Greedy algorithm for the design of linear-phase FIR filters with sparse coefficients”, Circuits, Syst. Signal Process., vol. 35, no. 4, pp. 1427–1436, 2016. DOI 10.1007/s00034-015-0122-5.
  • [25] W. Chen, M. Huang, and X. Lou, “Design of sparse FIR filters with reduced effective length,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 4, pp. 1496–1506, Apr. 2019. DOI: 10.1109/TCSI.2018.2883965.
  • [26] R. Matsuoka, S. Kyochi, S. Ono, and M. Okuda, “Joint sparsity and order optimization based on ADMM with non-uniform group hard thresholding,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 5, pp. 1602–1613, May 2018. DOI: 10.1109/TCSI.2017.2763969.
  • [27] J. Konopacki and K. Mościńska, “Design of sparse narrowband FIR filters with very low group delay”, Przegląd Elektrotechniczny, no 9, pp. 103-106, 2019. DOI:10.15199/48.2019.09.20.
  • [28] W. Chen, M. Huang, and X. Lou, “Sparse FIR filter design based on cascaded compensation structure,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019, pp. 1–5. [39]
  • [29] M. Grant and S. Boyd. “CVX: MATLAB software for disciplined convex programming,” version 2.1 Mar. 2014 [Online]. Available: http://cvxr.com/cvx.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e88166d-fa7f-4ba4-9781-0a6d9c679fd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.