PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solidification/Stabilization Treatment for organic oil immobilization in Algerian Petroleum Drill Cuttings: Optimization and Acceptance Tests for Landfilling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hassi Messaoud oil field is one of the most important fields in Algeria and the world, because it covers an important quantity of total Crude Oil Production in Algeria. Furthermore, two-thirds of this oil field is underexplored or not explored. Therefore, the drilling process of petroleum wells in this field is a continuous process that results in significant drilling waste. This implies that enormous noxious quantities of drilling waste are produced daily that require treatment via solidification/stabilization (S/S) process before being landfilled. These types of wastes have pollution concentration that significantly exceeds the safety standards. In this study, we focus on the factors affecting the solidification/stabilization treatment of the drill cuttings obtained from Hassi Messaoud oil field and the process optimization. The solidification/stabilization is performed using the cement as binder, and sand, silicate, organophilic clay and activated carbon as additives. The study has been divided into two steps: (i) Determining the optimum ratio of each element used in the S/S process for the organic element (hydrocarbon) elimination, (ii) Combining the optimum ratios found in the previous step to determine the optimal mixture. The obtained results in the first step showed that the optimum ratio for the cement-to-drill cuttings mass ratio is 0.09:1. For the additives-to-drill cuttings mass ratios are 0.04:1, 0.006:1, 0.013:1 and 0.013:1 for the sand, sodium silicate, organophilic clay and activated carbon, respectively. An optimum formula is found whose main finding shows that the hydrocarbon content of our sample is dropped from 9.40 to 1.999%. Many tests’ results such as matrix permeability, resistance to free compression and heavy metals rate before and after S/S process were investigated before landfilling. Besides that, in the light of outcomes achieved by this assessment, these harmful cuttings can be converted into a useful product that helps in reducing the environmental foot prints.
Rocznik
Strony
95--105
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  •  Laboratoire de géologie du Sahara, Université Kasdi Merbah Ouargla, Route de Ghardaia BP 511 Ouargla Algérie.
  • Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Street NW, Calgary, AB, T2N1N4, Canada
  • Laboratoire de géologie du Sahara, Université Kasdi Merbah Ouargla, Route de Ghardaia BP 511 Ouargla Algérie
  • SONATRACH/Institut Algérien du Pétrole, Avenue 1 Novembre 35000 Boumerdès, Algeria
autor
  • Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Street NW, Calgary, AB, T2N1N4, Canada
  •  Department of Energy, Minerals and Petroleum Engineering, Faculty of Applied Sciences and Technology, Mbarara, University of Science and Technology (MUST), Kihumuro Campus, Mbarara, Uganda
  •  Laboratoire de géologie du Sahara, Université Kasdi Merbah Ouargla, Route de Ghardaia BP 511 Ouargla Algérie.
Bibliografia
  • 1. Abbas, A.H. (2011). Les bourbiers de forages pétroliers et des unités de production:Impact sur l’environnement et technique de traitement. Kasdi Merbeh Ouargla.
  • 2. Arafat, H.A., Hebatpuria, V.M., Rho, H.S., Pinto, N.G., Bishop, P.L. & Buchanan, R.C. (1999). Immobilization of phenol in cement-based solidified/stabilized hazardous wastes using regenerated activated carbon: Role of carbon. J. Hazard. Mater. 70, 139–156. DOI: 10.1016/S0304-3894(99)00127-2
  • 3. Belferra, A., Kriker, A., Abboudi, S. & Bi, S.T. (2016). Effect of granulometric correction of dune sand and pneumatic waste metal fibers on shrinkage of concrete in arid climates. J. Clean. Prod. 112, 3048–3056. DOI : 10.1016/j.jclepro.2015.11.007
  • 4. Bodzek, M. (2022). Nanoparticles for water disinfection by photocatalysis: A review. Archives of Environmental Protection, 48, 1, pp. 3–17, DOI: 10.24425/aep.2022.140541
  • 5. Boutammine, H., Salem, Z. & Khodja, M. (2020). Petroleum drill cuttings treatment using stabilization/solidification and biological process combination. Soil Sediment Contam. 29, 369–383. DOI: 10.1080/15320383.2020.1722982
  • 6. Clark, A.I. & Perry, R. (1985). Cement-Based Stabilization/ Solidification Processes for the disposal of toxic wastes. Proceedings from a Workshop on Environmental Technology Assessment. Beaurmont, PWR, Jain, RK and Engelbrecht, RS, Eds. pp. 1–44.
  • 7. Coz, A., Andrés, A., Soriano, S., Viguri, J.R., Ruiz, M.C. & Irabien, J.A. (2009). Influence of commercial and residual sorbents and silicates as additives on the stabilisation/solidification of organic and inorganic industrial waste. J. Hazard. Mater. 164, 755–761. DOI: 10.1016/j.jhazmat.2008.08.079
  • 8. Guide to disposal of chemically stabilized and solidified wastes, 1982. U.S EPA SW872. DOI: 10.1016/0016-2361(79)90171-6
  • 9. Kherfi, A. & Ganoune, L. (2018). Etude de l’efficacité des méthodes de traitement de boue de forage appliquée. Memoire de licence, Universite Kasdi Merbeh Ouargla.
  • 10. Khodja, M. (2008). Les Fluides De Forage : Etude Des Performances Et Considerations Environnementa 198.
  • 11. Krauthammer, T., Elfahal, M.M., Lim, J., Ohno, T., Beppu, M. & Markeset, G. (2003). Size effect for high-strength concrete cylinders subjected to axial impact. Int. J. Impact Eng. 28, 1001–1016. DOI: 10.1016/S0734-743X(02)00166-5
  • 12. Lake, C.B. & Menzies, T. (2007). Assessment of two thermally treated drill mud wastes for landfill containment applications. Waste Management & Research: The Journal for a Sustainable Circular Economy 394–401. DOI: 10.1177/0734242X07073652
  • 13. Larbi, A., Daaou, M. & Faraoun, A. (2015). Investigation of structural parameters and self-aggregation of Algerian asphaltenes in organic solvents. Pet. Sci. 12, 509–517. DOI: 10.1007/s12182-015-0041-x
  • 14. Laroche, O., Wood, S.A., Tremblay, L.A., Ellis, J.I., Pawlowski, J., Lear, G., Atalah, J. & Pochon, X. (2016). First evaluation of foraminiferal metabarcoding for monitoring environmental impact from an offshore oil drilling site. Mar. Environ. Res. 120, 225–235. DOI: 10.1016/j.mrenvres.2016.08.009
  • 15. Leonard, S.A., Roy, A.D. & Stegemann, J.A. (2010). Stabilization/ solidification of petroleum drill cuttings: Thermal and microstructural studies of binder hydration products. Environ. Eng. Sci. 27, 889–903. DOI: 10.1089/ees.2010.0147
  • 16. Leonard, S.A. & Stegemann, J.A. (2010). Stabilization/solidification of petroleum drill cuttings: Leaching studies. J. Hazard. Mater. 174, 484–491. DOI: 10.1016/j.jhazmat.2009.09.078
  • 17. Liu, J., Nie, X., Zeng, X. & Su, Z. (2012). Cement-based solidification/ stabilization of contaminated soils by nitrobenzene. Front. Environ. Sci. Eng. China 6, 437–443. DOI: 10.1007/s11783-012-0406-y
  • 18. Malviya, R. & Chaudhary, R. (2006). Factors affecting hazardous waste solidification/stabilization: A review. J. Hazard. Mater. 137, 267–276. DOI: 10.1016/j.jhazmat.2006.01.065
  • 19. Malviya, R. & Chaudhary, R. (2004). Study of the treatment effectiveness of a solidification/stabilization process for waste bearing heavy metals. J. Mater. Cycles Waste Manag. 6, 147–152. DOI: 10.1007/s10163-004-0113-2
  • 20. Masrullita, Perry Burhan, R.Y. & Trihadiningrum, Y. (2018). Stabilization/solidification of waste containing heavy metals and hydrocarbons using OPC and land trass cement. J. Ecol. Eng. 19, 88–96. DOI: 10.12911/22998993/92926
  • 21. Montgomery, D.M., Sollars, C.J., Perry, R., Tarling, S.E., Barnes, P. & Henderson, E. (1991). Treatment of Organic-Contaminated Industrial Wastes Using Cement-Based Stabilization/Solidification – Ii. Microstructural Analysis of the Organophilic Clay as a Pre-Solidification Adsorbent. Waste Manag. Res. 9, 113–125. DOI: 10.1177/0734242X9100900116
  • 22. Ogechi Opete, S.E., Ibifuro, A.M. & Elijah, T.I. (2010). Stabilization/solidification of synthetic Nigerian drill cuttings. African J. Environ. Sci. Technol. 4, 149–153. DOI: 10.5897/ajest09.012
  • 23. Paria, S. & Yuet, P.K. (2006). Solidification-stabilization of organic and inorganic contaminants using portland cement: A literature review. Environ. Rev. 14, 217–255. DOI: 10.1139/A06-004
  • 24. Poon, C.S., Peters, C.J. & Perry, R. (1985). Mechanisms of Metal Stabilization by Cement Based Fixation Processes. Sci. Total Environ. Elsevier Holland pp. 55–71.
  • 25. Rho, H., Arafat, H.A., Kountz, B., Buchanan, R.C., Pinto, N.G. & Bishop, P.L. (2001). Decomposition of hazardous organic materials in the solidification/stabilization process using catalytic-activated carbon. Waste Manag. 21, 343–356. DOI: 10.1016/S0956-053X(00)00080-5
  • 26. Rosener, M. (2008). Etude pétrophysique et modélisation des effets des transferts thermiques entre roche et fluide dans le contexte géothermique de Soultz-sous-Forêts. To cite this version : HAL Id : tel-00202959 Etude pétrophysique et modélisation des effets des transferts.
  • 27. Rusin, M., Gospodarek, J. & Nadgórska-Socha, A. (2021). Time-delayed effect of petroleum-derived products in soil and their bioremediation on plant – herbivore interaction. Archives of Environmental Protection, 47, 3,pp. 71–81, DOI: 10.24425/aep.2021.138465
  • 28. Tanikawa, W. & Shimamoto, T. (2006). Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks. Hydrol. Earth Syst. Sci. Discuss. 3, 1315–1338. DOI: 10.5194/hessd-3-1315-2006
  • 29. Vaccari, M. & Castro, F.D. (2019). Non-conventional stabilisation/ solidification treatment of industrial wastes with residual powdered paints. Waste Manag. Res. 37, 1012–1024. DOI: 10.1177/0734242X19860178
  • 30. Vehlow, J. (2012). Reduction of dioxin emissions from thermal waste treatment plants: A brief survey. Rev. Environ. Sci. Biotechnol. 11, 393–405. DOI: 10.1007/s11157-012-9296-5
  • 31. Wang, Z., Sun, Y., Zhang, S. & Wang, Y. (2019). Effect of sodium silicate on Portland cement/calcium aluminate cement/gypsum rich-water system: Strength and microstructure. RSC Adv. 9, 9993–10003. DOI: 10.1039/c8ra09901d
  • 32. Yoon, S., Bhatt, S.D., Lee, W., Lee, H.Y., Jeong, S.Y., Baeg, J.O. & Lee, C.W. (2009). Separation and characterization of bitumen from Athabasca oil sand. Korean J. Chem. Eng. 26, 64–71. DOI: 10.1007/s11814-009-0011-3
  • 33. Young, J.F. (1992). Dense High Strength, Low Permeability Cement Based Materials for Containment. Proc. 1st Intl Symposium, Cement Industry Sol. to Waste Mgt, Canadian Portland Cement Assoc. Toronto pp. 13–22.
  • 34. Zhang, J. & Bishop, P.L. (2002). Stabilization/solidification (S/S) of mercury-containing wastes using reactivated carbon and Portland cement. J. Hazard. Mater. 92, 199–212. DOI: 10.1016/S0304-3894(02)00019-5
  • 35. Zhao, T. Zhu, J. & Chi, P. (1999). Modification of Pore Chemicals in evaluation of High-Performance Concrete Permeability. ACI Mater. J. 96: 84–89.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e876d82-aa14-44d2-9a25-6446f9e33461
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.