Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zwiększenie wytrzymałości układu frakcjonowanego Proporcjonalny sterownik całkujący do sterowania prędkością silnika indukcyjnego z pośrednim sterowaniem zorientowanym na pole
Języki publikacji
Abstrakty
his article presents a novel approach for controlling an induction motor (IM) drive using a fractionalized order proportional integral (FrOPI) controller within an indirect field-oriented control (IFOC) scheme. In contrast to the conventional Integer Order PI controllers (IOPI), the FrOPI controllers demonstrate enhanced performance owing to their nonlinear characteristics and the inherent iso-damping property of fractional order operators. The performance of the induction motor is thoroughly assessed under various conditions, including starting, running, speed reversal, and sudden changes in load torque. Simulation results are then presented to confirm the effectiveness of the induction motor drive when utilizing the FrOPI controller.
Ten artykuł prezentuje nowatorskie podejście do sterowania napędem silnika indukcyjnego (IM) za pomocą regulatora ułamkowego rzędu typu proporcjonalno-całkowego (FrOPI) w ramach pośredniego sterowania zorientowanego na pole (IFOC). W przeciwieństwie do konwencjonalnych regulatorów PI o całkowitym rzędzie (IOPI), regulatory FrOPI wykazują poprawioną wydajność dzięki swoim nieliniowym właściwościom i wrodzonej właściwości izodempingowej operatorów rzędu ułamkowego. Wydajność silnika indukcyjnego jest dokładnie oceniana w różnych warunkach, w tym podczas rozruchu, pracy, zmiany prędkości i nagłych zmian momentu obciążenia. Wyniki symulacji są następnie przedstawione w celu potwierdzenia skuteczności napędu silnika indukcyjnego przy użyciu regulatora FrOPI.
Wydawca
Czasopismo
Rocznik
Tom
Strony
166--171
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
- Université de Boumerdès, Laboratoire Ingénierie des Systèmes et Télécommunication, Faculté de Technologie, Boumerdès, Algeria
- Ecole Nationale Supérieure de Technologie [ENST]
autor
- Applied Automation Laboratory, F.H.C., University of Boumerdes, 35000 Boumerdes, Algeria
autor
- Applied Automation Laboratory, F.H.C., University of Boumerdes, 35000 Boumerdes, Algeria
- 1Electrical Engineering Department,Mohamed BoudiafUniversity of M’sila - Algeria
Bibliografia
- [1] Blaschke F. A new method for the structural decoupling of A.C. induction machines. In: Conf Rec IFAC, Germany: Duesseldorf; October 1971, p. 1–15.
- [2] Takahashi I, Noguchi T. A new quick response and high-efficiency control strategy of an induction motor. IEEE Trans Ind Appl 1986;IA-22:820–7
- [3] Khurram, A., Rehman, H., Mukhopadhyay, S., & Ali, D. (2018). Comparative analysis of integer-order and fractional-order proportional integral speed controllers for induction motor drive systems. Journal of Power Electronics, 18(3), 723-735.
- [4] Idir, A., Kidouche M., Zelmat M. and Ahriche A., “A comparative study between DTC, SVM-DTC and SVM-DTC with PI controller of induction motor,” Article Université M'Hamed Bougara de Boumerdès; ICEO’11, pp. 94-97
- [5] Han, J. (2009). From PID to active disturbance rejection control. IEEE transactions on Industrial Electronics, 56(3), 900- 906.
- [6] Idir A., Kidouche M., Bensafia Y., Khettab K., Tadjer S.A., “Speed control of DC motor using PID and FOPID controllers based on differential evolution and PSO”, Int. J. Intell. Eng. Syst., (2018), vol.11, no.3, pp. 241–249.
- [7] LUO, Ying et CHEN, YangQuan. Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems. Automatica, 2012, vol. 48, no 9, p. 2159-2167.
- [8] Idir A., Canale L., Bensafia Y., Khettab, K. “Design and Robust Performance Analysis of Low-Order Approximation of Fractional PID Controller Based on an IABC Algorithm for an Automatic Voltage Regulator System”, Energies, (2022), vol. 15, 8973.
- [9] Ramadan, H. S., Padmanaban, S., & Mosaad, M. I. Metaheuristic-based near-optimal fractional order PI controller for on-grid fuel cell dynamic performance enhancement. Electric Power Systems Research, 2022, vol. 208, p. 107897.
- [10] Bensafia Y., Idir A., Khettab K., Akhtar M. S., Zahra S., “Novel Robust Control Using a Fractional Adaptive PID Regulator for an unstable system”, Indonesian Journal of Electrical Engineering and Informatics (IJEEI), (2022), 10 (4), 847-855.
- [11] Idir A., Canale L., Tadjer S. A., Chekired F., "High Order Approximation of Fractional PID Controller based on Grey Wolf Optimization for DC Motor,". 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Jun 2022, Prague, Czech Republic. pp.1–6.
- [12] Bensafia, Y., Idir, A., Zemmit, A., et al. Performance Improvement of Aircraft pitch angle using the Fractional Order Adaptive PID Controller. Przeglad Elektrotechniczny, 2023, vol. 99, no 5,
- [13] Ullah, N., Wang, S., et Khattak, M. I., Fractional order fuzzy backstepping torque control of electrical load simulator. Przegląd Elektrotechniczny, 2013, vol. 89, no 5, p. 237-240.
- [14] Idir, A., Bensafia, Y., Khettab, K., and Canale, L., Performance improvement of aircraft pitch angle control using a new reduced order fractionalized PID controller, Asian J Control 25 (2023), 2588–2603.
- [15] Bensafia Y., Khettab K., Idir A., "A Novel Fractionalized PID controller Using The Sub-optimal Approximation of FOTF," Algerian Journal of Signals and Systems, (2022), vol.7, no.1, pp. 21–26.
- [16] Idir A., Bensafia Y., Khettab K., "Design of an Optimally Tuned Fractionalized PID Controller for DC Motor Speed Control Via a Henry Gas Solubility Optimization Algorithm", Int. J. Intell. Eng. Syst., (2022), vol.15, pp. 59–70.
- [17] Bensafia Y., Khettab K., Idir A.,“An Improved Robust Fractionalized PID Controller for a Class of Fractional-Order Systems with Measurement Noise”, International Journal of Intelligent Engineering and Systems, (2018), vol.11, no.2, pp. 200–207.
- [18] Idir, A., Akroum, H., Tadjer, S. A., & Canale, L. (2023, June). A Comparative Study of Integer Order PID, Fractionalized Order PID and Fractional order PID Controllers on a Class of Stable System. In 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-6). IEEE.
- [19] Kumar N., Alotaibi M. A., Singh A., Malik H., & Nassar M.E., "Application of Fractional Order-PID Control Scheme in Automatic Generation Control of a Deregulated Power System in the Presence of SMES Unit," Mathematics, (2022), vol. 10, no.3, pp. 521.
- [20] T. Hägglund and K. J. Åstrom, “Revisiting the ZieglerNichols tuning rules for PI control,” Asian J. Contr., Vol. 4, No. 4, pp. 364-380, 2002
- [21] Khurram, A., Rehman, H., Mukhopadhyay, S., & Ali, D. ‘’Comparative analysis of integer-order and fractional-order proportional integral speed controllers for induction motor drive systems’’. Journal of Power Electronics, 2018, vol. 18, no 3, p. 723-735.
- [22] Elwer, A. S. ‘’A novel technique for tuning PI-controllers in induction motor drive systems for electric vehicle applications’’., Journal of Power Electronics, 2006, vol. 6, no 4, p. 322-329.
- [23] Chang, G. W., Espinosa-Perez, G., Mendes, E., & Ortega, R..’’ Tuning rules for the PI gains of field-oriented controllers of induction motors’’., IEEE Transactions on industrial electronics, 2000, vol. 47, no 3, p. 592-602.
- [24] Duarte-Mermoud, M. A., Mira, F. J., Pelissier, I. S., & Travieso-Torres, J. C., ‘’Evaluation of a fractional order PI controller applied to induction motor speed control’’, In : IEEE ICCA 2010. IEEE, 2010. p. 573-577.
- [25] Kumar, D. M., Mudaliar, H. K., Cirrincione, M., Mehta, U., & Pucci, M. , ‘’Design of a fractional order PI (FOPI) for the speed control of a high-performance electrical drive with an induction motor’’., In : 2018 21st International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2018. p. 1198-1202.
- [26] Adigintla, S., & Aware, M. V. (2022). Design and analysis of a speed controller for fractional-order-modeled voltage-source-inverter-fed induction motor drive. International Journal of Circuit Theory and Applications, 50(7), 2378-2397.
- [27] Adigintla, S., & Aware, M. V. (2023). Improved constant phase fractional order approximation method for induction motor FOPI speed controller. International Journal of Circuit Theory and Applications, 51(3), 1069-1091.
- [28] Potdar, T., & Jape, M. V. (2022). Comparison of PI and Fuzzy Logic Control for Speed Control of Induction Motor for Marine Application (No. 8656). EasyChair.
- [29] Hassainia, S., Ladaci, S., Kechida, S., & Khelil, K. (2022). Impact of fractional filter in PI control loop applied to induction motor speed drive.
- [30] Keskin, B., & Eminoğlu, İ. (2022, June). Optimally tuned PI controller design for V/f control of induction motor. In 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (pp. 1-5). IEEE.
- [31] Giraldo, E. (2022). Adaptive indirect field oriented linear control of an induction motor. IAENG International Journal of Applied Mathematics, 52(1), 1-6.
- [32] Mencou, S., Yakhlef, M. B., & Tazi, E. B. (2022, March). Advanced torque and speed control techniques for induction motor drives: A review. In 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) (pp. 1-9). IEEE.
- [33] Chandra Sekhar, O., Lakhimsetty, S., & Bhat, A. H. (2021). A comparative experimental analysis of fractional order PI controller based direct torque control scheme for induction motor drive. International Transactions on Electrical Energy Systems, 31(1), e12705.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e8746d1-7d6e-4a86-8615-9a82b05dfd53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.