PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Designing of cooling conditions for Si-Al microalloyed TRIP steel on the basis of DCCT diagrams

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the research presented in the paper is to design the cooling routes after plastic deformation ensuring the multiphase structure with a high fraction of retained austenite on the basis of DCCT diagram for a new-developed Si-Al microalloyed TRIP steel. Design/methodology/approach: The CCT and DCCT diagrams were developed. Eight variants of the thermomechanical processing were designed on the basis of the DCCT diagram. The thermomechanical processing consisted of a multi-stage compression and various cooling strategies in the γ→α transformation range and isothermal holding temperature at a bainitic transformation region. Findings: The usefulness of DCCT diagram for designing the thermomechanical processing conditions for TRIP steels was demonstrated. The fraction of ferrite and retained austenite are highly dependent on a cooling path applied in the γ→α transformation region and a fraction of retained austenite especially on the isothermal holding temperature. The highest fraction of retained austenite as irregular grains located in a ferritic matrix and fine islands or interlath regions in bainitic regions were obtained at temperature of 400 and 450°C. Research limitations/implications: To determine precisely a fraction of retained austenite, the X-ray investigations has to be applied additionally to the image analysis. Practical implications: The designed cooling conditions are of great importance for the thermomechanical strategy for manufacturing the advanced high strength TRIP steels. Originality/value: The thermomechanical processing was carried out for a new group of TRIP steels with Si partially replaced by Al and containing microadditions of Nb and Ti.
Rocznik
Strony
115--124
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute for Ferrous Metallurgy, ul. K. Miarki 12, 44-100 Gliwice, Poland
autor
  • Institute for Ferrous Metallurgy, ul. K. Miarki 12, 44-100 Gliwice, Poland
Bibliografia
  • [1] B.C. De Cooman, Structure-properties relationship in TRIP steels containing carbide-free bainite, Current Opinion in Solid State and Materials Science 8 (2004) 285-303.
  • [2] R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry, Archives of Civil and Mechanical Engineering 8/2 (2008) 103-117.
  • [3] O. Muransky, P. Hornak, P. Lukas, J. Zrnik, P. Sittner, Investigation of retained austenite stability in Mn-Si TRIP steel in tensile deformation condition, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 26-30.
  • [4] A.K. Lis, B. Gajda, Modelling of the DP and TRIP microstructure in the CMnAlSi automotive steel, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 127-134.
  • [5] B. Gajda, A.K. Lis, Intercritical annealing with isothermal holding of TRIP CMnAlSi steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 439-442.
  • [6] Z.C. Wang, S.J. Kim, C.G. Lee, T.H. Lee, Bake-hardening behaviour of cold-rolled CMnSi and CMnSiCu TRIP-aided steel sheets, Journal of Materials Processing Technology 151 (2004) 141-145.
  • [7] A.J. DeArdo, J.E. Garcia, M. Hua, C.I. Garcia, A new frontier in microalloying: Advanced high strength coated sheet steels, Materials Science Forum 500-501 (2005) 27-38.
  • [8] W. Bleck, K. Phiu-On, Microalloying of cold-formable multi phase steel grades, Materials Science Forum 500-501 (2005) 97-112.
  • [9] N. Fonstein, O. Yakubovsky, D. Bhattacharya, F. Siciliano, Effect of niobium on the phase transformation behavior of aluminum containing steels for TRIP products, Materials Science Forum 500-501 (2005) 453-460.
  • [10] B. Ehrhardt, T. Gerber, Property related design of advanced cold rolled steels with induced plasticity, Steel Grips 4 (2004) 247-255.
  • [11] H.B. Ryu, J.G. Speer, J.P. Wise, Effect of thermomechanical processing on the retained austenite content in a Si-Mn Transformation-Induced-Plasticity steel, Metallurgical and Materials Transactions A 33A (2002) 2811-2816.
  • [12] I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced-plasticity steel, Metallurgical and Materials Transactions A 34A (2003) 1599-1609.
  • [13] A. Basuki, E. Aernoudt, Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite, Journal of Materials Processing Technology 89-90 (1999) 37-43.
  • [14] I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels, Metallurgical and Materials Transactions 35A (2004) 2331-2341.
  • [15] L. Skalova, R. Divizova, D. Jandova, Thermo-mechanical processing of low-alloy TRIP-steel, Journal of Materials Processing Technology 175 (2006) 387-392.
  • [16] Z. Li, D. Wu, Effects of hot deformation and subsequent austempering on the mechanical properties of Si-Mn TRIP steels, ISIJ International 46/1 (2006) 121-128.
  • [17] H.J. Koh, S.K. Lee, S.H. Park, S.J. Choi, S.J. Kwon, N.J. Kim, Effect of hot rolling conditions on the microstructure and mechanical properties of Fe-C-Mn-Si multiphase steels, Scripta Materialia 38 (1998) 763-768.
  • [18] A. Grajcar, Structural and mechanical behaviour of TRIP steel in hot-working conditions, Journal of Achievements in Materials and Manufacturing Engineering 30/1 (2008) 27-34.
  • [19] A. Grajcar, H. Krztoń, Effect of isothermal bainitic transformation temperature on retained austenite fraction in C-Mn-Si-Al-Nb-Ti TRIP-type steel, Journal of Achievements in Materials and Manufacturing Engineering 35/2 (2009) 169-176.
  • [20] A. Grajcar, Morphological features of retained austenite in thermo-mechanically processed C-Mn-Si-Al-Nb-Ti multiphase steel, Journal of Achievements in Materials and Manufacturing Engineering 39/1 (2010) 7-18.
  • [21] J. Adamczyk, A. Grajcar, Structure and mechanical properties of DP-type and TRIP-type sheets obtained after the thermomechanical processing, Journal of Materials Processing Technology 162-163 (2005) 267-274.
  • [22] W. Shi, L. Li, Ch. Yang, R.Y. Fu, L. Wang, P. Wollants, Strain-induced transformation of retained austenite in low-carbon low-silicon TRIP steel containing aluminum and vanadium, Materials Science and Engineering A 429 (2006) 247-251.
  • [23] I.B. Timokhina, E.V. Pereloma, H. Beladi, P.D. Hodgson, A study of the strengthening mechanism in the thermo-mechanically processed TRIP/TWIP steel, Proceedings of the 3rd International Conference on Thermomechanical Processing of Steels, Padua, 2008, 1-10.
  • [24] S. Hashimoto, S. Ikeda, K. Sugimoto, S. Miyake, Effects of Nb and Mo addition to 0.2%C-1.5%Si-1.5%Mn steel on mechanical properties of hot rolled TRIP-aided steel sheets, ISIJ International 44/9 (2004) 1590-1598.
  • [25] M. Zhang, L. Li, R.Y. Fu, D. Krizan, B.C. De Cooman, Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels, Materials Science and Engineering A 438-440 (2006) 296-299.
  • [26] I. Tsukatani, S. Hashimoto, T. Inoue, Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite, ISIJ International 31/9 (1991) 992-1000.
  • [27] A. Grajcar, M. Opiela, Influence of plastic deformation on CCT-diagrams of low-carbon and medium-carbon TRIP steels, Journal of Achievements in Materials and Manufacturing Engineering 29/1 (2008) 71-78.
  • [28] J. Adamczyk, M. Opiela, Influence of the thermomechanical treatment parameters on the inhomogeneity of the austenite structure and mechanical properties of the Cr-Mo steel with Nb, Ti and B microadditions, Journal of Materials Processing Technology 157-158 (2004) 456-461.
  • [29] A.K. Panda, R.I. Ganguly, D.S. Sarma, R.Ch. Gupta, S. Misra, Effect of thermomechanical treatment on structure and mechanical properties of Mo-bearing dual phase steel, Steel Research 66 (1995) 309-317.
  • [30] A. Grajcar, M. Opiela, Microstructure evolution in thermomechanically processed TRIP-type microalloyed steel, Proceedings of the 3rd International Conference on Thermomechanical Processing of Steels, Padua, 2008, 1-11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e864083-e4bd-4c46-af84-1c57a5d301da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.