PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical and experimental study on forming preforms in a CNC skew rolling mill

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper relates to a study on the formation of elongated preforms in a CNC skew rolling mill. First, a numerical analysis was performed to investigate forming processes for three different parts: a scraper, a connecting rod, and a hook. The shapes and dimensions of preforms were designed, and rolling and closed-died forging processes for producing these parts were simulated numerically. Distributions of temperature, effective strain and damage function were determined for rolled preforms. Loads and torques in the rolling process were measured. It was found that the forming process of preforms performed in a CNC skew rolling mill was characterized by relatively low force parameters in relation to the dimensions of formed parts. Numerical simulations of the forging process showed that all forged parts had the required shape, which indicates that the preforms were designed correctly. Following the numerical analysis, experiments were performed in which the preforms were rolled under laboratory conditions (in a scale of 1:2). Experimental results demonstrated that the rolled parts had no internal defects (cracks) and were characterized by high dimensional accuracy.
Rocznik
Strony
art. no. e54, 2022
Opis fizyczny
Bibliogr. 39 poz., fot., rys., wykr.
Twórcy
  • Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
  • Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
  • Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
  • Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
Bibliografia
  • 1. Milenin A, Rec T, Walczyk W, Pietrzyk M. Model of curvature of crankshaft blank during the heat treatment after forging. Procedia Eng. 2014;81:498–503. https://doi.org/10.1016/j.proeng.2014.10.029.
  • 2. Lange K. Handbook of metal forming. New York: McGraw-Hill Book Company; 1985.
  • 3. Gronostajski Z, Hawryluk M. The main aspects of precision forging. Arch Civ Mech Eng. 2008;8(2):39–55. https://doi.org/10.1016/S1644-9665(12)60192-7.
  • 4. Vazques V, Altan T. Die design for flashless forging of complex parts. J Mater Process Tech. 2000;98:81–9. https://doi.org/10.1016/S0924-0136(99)00308-8.
  • 5. Zhao X, Zhao G, Wang G, Wang T. Preform die shape design for uniformity of deformation in forging based on preform sensitivity analysis. J Mater Process Tech. 2002;128:25–32. https://doi.org/10.1016/S0924-0136(02)00054-7.
  • 6. Sun W, Chen L, Zhang T, Zhang K, Zhao G, Wang G. Preform optimization and microstructure analysis on hot precision forging process of a half axle flange. Int J Adv Manuf Tech. 2018;95:2157–67. https://doi.org/10.1007/s00170-017-1377-8.
  • 7. Alimirzaloo V, Biglari FR, Sadeghi MH, Keshtiban PM. A novel method for preform die design in forging process of an airfoil blade based on Lagrange interpolation and meta-heuristic algorithm. Int J Adv Manuf Tech. 2019;102:4031–45. https://doi.org/10.1007/s00170-019-03512-9.
  • 8. Lu B, Ou H, Ciu ZS. Shape optimisation of preform design for precision close-die forging. Struct Multidisc Optim. 2011;44:785–96. https://doi.org/10.1007/s00158-011-0668-1.
  • 9. Lee SR, Lee YK, Park CH, Yang DY. A new method of preform design in hot forging by using electric field theory. Int J Mech Sci. 2002;44:773–92. https://doi.org/ 10. 1016/S0020-7403(02)00003-6.
  • 10. Knust J, Podszus F, Stonis M, Behrens BA, Overmeyer L, Ullmann G. Preform optimisation for hot forging process using genetic algorithms. Int J Adv Manuf Tech. 2017;89:1623–34. https://doi.org/10.1007/s00170-016-9209-9.
  • 11. Dombelsky J, Kraft F, Sims B. Welded preforms for forging. J Mater Process Tech. 2006;17:141–9. https://doi.org/10.1016/j.jmatprotec.2005.06.066.
  • 12. Kim HR, Seo MG, Bae WB. A study of the manufacturing of tie-rod ends with casting/forging process. J Mater Process Tech. 2002;125–126:471–6. https://doi.org/10.1016/S0924-0136(02)00323-0.
  • 13. Li F, Chen P, Han J, Deng L, Yi J, Liu Y, Eckert J. Metal flow behaviour of P/M connecting rod preform in flashless forging based on isothermal compression and numerical simulation. J Mater Res Tech. 2020;9(2):1200–9. https:// doi. org/ 10. 1016/j.jmrt.2019.11.047.
  • 14. Lis K, Wójcik Ł, Pater Z. Numerical analysis of a skew rolling process for producing a crankshaft preform. Open Eng. 2016;6:581–4. https://doi.org/10.1515/eng-2016-0087.
  • 15. Pater Z, Tomczak J, Bulzak T. Problems of forming stepped axles and shafts in a 3-roller skew rolling mill. J Mater Res Tech. 2020;9(5):10434–46. https://doi.org/10.1016/j.jmrt.2020.07.062.
  • 16. Mamalis AG, Bilalis NG. Flexible manufacturing systems in metal forming. J Appl Metalwork. 1986;4:130–42. https://doi.org/10.1007/BF02834377.
  • 17. Rao Y, Huang G, Li P, et al. An integrated manufacturing information system for mass sheet metal cutting. Int J Adv Manuf Technol. 2007;33:436–48. https://doi.org/10.1007/s00170-006-0484-8.
  • 18. Li P, Wang L, Li M. Flexible-bending of profiles and tubes of continuous varying radii. Int J Adv Manuf Technol. 2017;88:1669–75. https://doi.org/10.1007/s00170-016-8885-9.
  • 19. Hu Z, Jin J, Jinlan B. Research on the forming direction optimization for the uniformity of the sheet part thickness in the CNC incremental forming. Int J Adv Manuf Technol. 2017;93:2547–59. https://doi.org/10.1007/s00170-017-0616-3.
  • 20. Morozov VV, Gusev VG, Dvoryaninova TP. Surface microgeometry after selective laser sintering of metal powder. Russ Engin Res. 2016;36:1004–7. https://doi.org/10.3103/S1068798X1612011X.
  • 21. Schubert N, Steger J, Gerlach M, Lorenz B. Production planning for optimal mass pre-distribution for axial feed cross rolling. Procedia Manuf. 2019;27:192–6. https://doi.org/10.1016/j.promfg.2019.01.001.
  • 22. Pater Z. FEM analysis of loads and torque in a skew rolling process for producing axisymmetric parts. Arch Metall Mater.2017;62(1):85–90. https://doi.org/10.1515/amm-2017-0011.
  • 23. Pater Z, Tomczak J, Bulzak T. Numerical analysis of the skew rolling process for rail axle. Arch Metall Mater. 2015;60(1):415–8. https://doi.org/10.1515/amm-2015-0068.
  • 24. Pater Z, Tomczak J, Bulzak T. Numerical analysis of the skew rolling process for main shafts. Metalurgija. 2015;54(4):627–30.
  • 25. Pater Z, Tomczak J, Lis K, Bulzak T, Shu X. Forming of rail car axles in a CNC skew rolling mill. Arch Civ Mech Eng. 2020;20(e69):1–13. https://doi.org/10.1007/s43452-020-00075-5.
  • 26. Xu C, Shu XD. Influence of process parameters on the forming mechanics parameters of the three-roll skew rolling forming of the railway hollow shaft with 1:5. Metalurgija. 2018;57(3):153–6.
  • 27. Bartnicki J, Xia Y, Shu X. The chosen aspects of skew rolling of hollow stepped shafts. Materials. 2021;14(e764):1–11. https://doi.org/10.3390/ma14040764.
  • 28. Kpodzo K, Fourment L, Lanse P, Montmitonnet P. An accurate time integration scheme for arbitrary rotation motion: application to metal forming simulation. Int J Mater Form. 2016;9:71–84. https://doi.org/10.1007/s12289-014-1208-5.
  • 29. Meyer M, Stonis M, Behrens B. Cross wedge rolling and bi-directional forging of preforms for crankshafts. Prod Eng Res Dev. 2015;9:61–71. https://doi.org/10.1007/s11740-014-0581-8.
  • 30. Novella MF, Ghiotti A, Bruschi S, Bariani PF. Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars. J Mater Process Technol. 2015;222:259–67. https://doi.org/10.1016/j.jmatprotec.2015.01.030.
  • 31. Pater Z, Tomczak J, Bulzak T. FEM simulation of the cross-wedge rolling process for a stepped shaft. Strength Mater. 2017;49(4):521–30. https://doi.org/10.1007/s11223-017-9895-z.
  • 32. Tomczak J, Pater Z, Bulzak T. Skew rolling of rods from scrap rail heads. Materials. 2019;12(e2970):1–17. https://doi.org/10.3390/ma12182970.
  • 33. Murillo-Marrodan A, Garcia E, Cortes F. A study of friction model performance in a skew rolling process numerical simulation. Int J Simul Model. 2018;17(4):569–82. https://doi.org/10.2507/IJSIMM17(4)441.
  • 34. Yamane K, Shimoda K, Kuroda K, Kajikawa S, Kuboki T. A new ductile fracture criterion for skew rolling and its application to evaluate the effect of number of rolls. J Mater Process Technol. 2021;291: e116989. https://doi.org/10.1016/j.jmatprotec.2020.116989.
  • 35. Pater Z, Tomczak J, Bulzak T, Wójcik Ł, Skripalenko MM. Prediction of ductile fracture in skew rolling processes. Int J Mach Tool Manuf. 2021;163: e103706. https://doi.org/10.1016/j.ijmachtools.2021.103706.
  • 36. Pater Z, Tomczak J, Bulzak T, Wójcik Ł, Lis K. Rotary compression in tool cavity—a new ductile fracture calibration test. Int J Adv Manuf Tech. 2020;106:4437–49. https://doi.org/10.1007/s00170-020-04943-5.
  • 37. Pater Z. Cross wedge rolling. In: Button ST, editor. Comprehensive materials processing, vol. 3. Amsterdam: Elsevier Ltd.; 2014.p. 211–79.
  • 38. Pater Z. Theoretical method for estimation of mean pressure on contact area between rolling tools and workpiece in cross Wedge rolling processes. Int J Mech Sci. 1997;39(2):233–43. https://doi.org/10.1016/0020-7403(96)00057-4.
  • 39. Tomczak J, Pater Z, Bulzak T, Lis K, Kusiak T, Sumorek A, Buczaj M. Design and technological capabilities of a CNC skew rolling mill. Arch Civ Mech Eng. 2021;21(e72):1–17. https://doi.org/10.1007/s43452-021-00205-7.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e8173b4-617f-459d-b892-3acb84d9d2bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.