PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PEM electrolysis system performance and system safety integration

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Efektywność pracy elektrolizera typu PEM na tle bezpiecznej konstrukcji systemu produkcji wodoru
Języki publikacji
EN
Abstrakty
EN
In this paper, the performance and design of hydrogen production system using two commercial 4.2 kW proton exchange membrane (PEM) water electrolysis stacks embedded in a custom-designed electrolyser is described. The PEM electrolyser system has multiple levels of construction which include, stack section, cooling unit, Balance of Plant (BOP), power electronics and system safety, all integrated with aid of PLC controller. Particular system alarms and fault conditions trigger the emergency mode, which safely shuts down the system. A crucial aspect of design and operation protocols around hydrogen safety application in the whole integration process is applied. The system integrated with in-house built metal hydride compressor supplies high pressure hydrogen (up to 200 bar, 5 Nm3/h) to SAIAMC testing facilities.
PL
Artykuł omawia konstrukcję oraz badanie osiągów systemu przeznaczonego do produkcji wodoru, który został zbudowany na bazie dwóch stosów elektrolizy wody typu PEM (4.2 kW każdy).System elektrolizera składa się z szeregu podzespołów, do których zaliczają się sekcja stosów, układ chłodzenia, zespół urządzeń wspomagających proces elektrolizy (BoP), układy zasilania elektrycznego, układ zabezpieczeń oraz kontroler typu PLC. Z uwagi na istotny aspekt bezpiecznej produkcji wodoru, kontroler wyłącza system w razie wystąpienia stanów alarmowych. System zintegrowano z kompresorem działającym w oparciu o wodorki metali, dostarczającego wodór przy wysokim ciśnieniu (200 bar, 5 Nm3/h) do laboratoriów badawczych (SAIAMC) na użytek własny.
Rocznik
Strony
1--8
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • HySA Systems Competence Centre, South African Institute of Advanced Materials Chemistry (SAIAMC), University of the Western Cape, Bellville 7535, South Africa
  • HySA Systems Competence Centre, South African Institute of Advanced Materials Chemistry (SAIAMC), University of the Western Cape, Bellville 7535, South Africa
  • HySA Systems Competence Centre, South African Institute of Advanced Materials Chemistry (SAIAMC), University of the Western Cape, Bellville 7535, South Africa
  • HySA Systems Competence Centre, South African Institute of Advanced Materials Chemistry (SAIAMC), University of the Western Cape, Bellville 7535, South Africa
  • HySA Systems Competence Centre, South African Institute of Advanced Materials Chemistry (SAIAMC), University of the Western Cape, Bellville 7535, South Africa
Bibliografia
  • [1] S. A. Zanganeh KE, “A novel process integration, optimization and design approach for large-scale implementation of oxyfired coal power plants with CO2 capture,” International Journal of Greenhouse Gas Cont, vol. 1, p. 47, 2007.
  • [2] The Environmental Literacy Council, “http://www.enviroliteracy.org/subcategory.php/21.html,” The Environmental Literacy Council, 28 January 2015. [Online]. http://www.enviroliteracy.org/subcategory.php/21.html. [Accessed 15 June 2018].
  • [3] M. Balat, “Potential importance of hydrogen as a future solution to environmental and transportation problems,” International Journal of Hydrogen energy, vol. 33, pp. 4013-4029, 2008.
  • [4] V. Molkov, Fundamentals of hydrogen safety enegeering 1, Belfast: Ventus Publishing ApS, 2012.
  • [5] M. Conte, A. Lacobazzi, M. Ronchetti and R. Vellone, “Hydrogen economy for a sustainable development: State of the art and technological perspectives,” J Power sources, pp. 171-187, 2001.
  • [6] K. G. d. Santosa, C. T. Eckerta and E. D. Rossia, “Hydrogen production in the electolysis of water in Brazil, a review,” Renewable and Sustainable Energy Reviews, vol. 68, pp. 563- 571, 2017.
  • [7] S. Kasai, “Hydrogen electrical energy storage by hightemperature steam electrolysis,” International Journal of Hydrogen energy, vol. 39, pp. 358-370, 2014.
  • [8] H. Miland and U. Ollerberg, “Testing of a small-scale standalone power system based on solar energy and hydrogen,” Solar Energy, vol. 86, no. 1, pp. 666-680, 2012.
  • [9] E. Kosonen, “Optimization strategies of PEM Electrolysers as part of solar PV system,” in 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe), Karlsruhe 2016, 2016.
  • [10] D. Ghribi, A. Khelifa, S. Diaf and M. Belhamel, “Study of hydrogen production system by using PV solar energy and PEM electrolyser in Algeria,” International Journal of Hydrogen Energy, vol. 38, pp. 8480-8490, 2013.
  • [11] I. Dincer. and C. Acar, “Review and evaluation of hydrogen production methods for better sustainability,” International Journal for Hydrogen energy, vol. 34, pp. 11094-11111, 2015.
  • [12] P. Moldrik, Z. Hradilek, “Research of the hydrogen storage system with photovoltaic panels”, Przeglad Elektrotechniczny (Electrical Review), vol. 87(9a), pp. 210-213, 2011.
  • [13] D. Gluchy, D. Kurz, G. Trzmiel, “The use of fuel cells to store energy from renewable sources”, Przeglad Elektrotechniczny (Electrical Review), vol. 90(4), pp. 81-84, 2014.
  • [14] Z. Belgroun, M. Hatti, S. Hanini, “Power interface efficiency evaluation for photovoltaic system used in hydrogen production”, Przeglad Elektrotechniczny (Electrical Review), vol. 95(6), pp. 81-85, 2019.
  • [15] C. Acar and C Dincer, “Comparative assessment of hydrogen production methods from renewable and non-renewable sources,” International Journal of Hydrogen Energy, vol. 39, pp. 1-12, 2014.
  • [16] A. Razniak, M. Dudek et al, “Determination of Electrical and Efficiency Parameters of Air Cooling of Low-Temperature PEM Fuel Cell Stack with Power of 5kW”, Przeglad Elektrotechniczny (Electrical Review), vol. 94(4), pp. 140-147, 2018.
  • [17] N. A. Zambri, A. Mohamed, “Hybrid Proton Exchange Membrane Fuel Cell with Battery Energy Storage for Stand- Alone Distributed Generation Applications”, Przeglad Elektrotechniczny (Electrical Review), vol. 89(5), pp. 161-166, 2013.
  • [18] M. Malinowski, J. Chmielowiec, G. Pasciak, T. Swieboda, “Usability evaluation of PEM fuel cell and supercapacitors application in the Emergency Power Backup System”, Przeglad Elektrotechniczny (Electrical Review), vol. 89(8), pp. 201-204, 2013.
  • [19] M. Chaplin, “http://www1.lsbu.ac.uk/water/electrolysis.html,” Water Structure and Science, 17 May 2017. [Online]. Available: http://www1.lsbu.ac.uk/water/electrolysis.html. [Accessed 26 June 2017].
  • [20] M. Schalenbach, A.R. Zeradjanin, O. Kasian, S. Cherevko and K.J.J Mayrhofer, “A Prospective on Low-Temperature Water Electrolysis - Challenges in Alkaline and Acidic Technology,” International Journal of Electrochemical Science, vol. 13, p. 1173, 2018.
  • [21] M. Carmo, D. L Fritz, J. Mergel and D. Stolten, “A comprehensive review on PEM water electrolysis,” International Journal of Hydrogen Energy, vol. 38, pp. 4901-4934, 2013.
  • [22] N. A. Kelly, “Hydrogen production by water electrolysis,” Advanced Hydrogen production, storage distribution, vol. 6, pp. 159-185, 2014.
  • [23] S. Grigoriev. P. Millet, “Water electrolysis technologies,” in Renewable Hydrogen Technologies: Production, Purification, storage Application and safety, Amsterdam, Luis M. Gandia; Gurutze Arzamendi; Pedro M. Dieguez, 2013, pp. 19-42.
  • [24] D. S. Agata Godula-jopek, Hydrogen Production, Chicago: John Wiley & Sons Inc, 2015.
  • [25] J. O. M. Bockris, “The hydrogen economy: it’s History,” International Journal of Hydrogen Energy, vol. 38, pp. 2579- 2588, 2013.
  • [26] S. Grigoriev, P. Millet, S. Korobtsev, V. Porembskiy, C. E. M. Pepic, C. Puyenchet and V. Fateev, “Hyrogen safety aspects related to high -pressure polymer electrolyte membrane water electrolysis,” International Journal of Hydrogen Energy, vol. 34, pp. 5986-5991, 2009.
  • [27] European Industrial Gases Association AISBL, “Gaseous hydrogen stations.,” European Industrial Gases Association AISBL, IGC Doc 15/06/E;, Chicago, 2006.
  • [28] J. Duboisb, G. Hûa, P. Poggia, F. Montignacb, P. Serre- Combeb, M. Musellia, J.C. Hoguetc, B. Vesyc, F. Verbeckec “Safety cost of a large scale hydrogen system for photovoltaic energy regulation,” in 4th Symp. (Int.) on hydrogen safety. September 12-14 2011, San Francisco, CA;, 2011.
  • [29] M. Lototskyy, Y. Klochko, M. W. Davids, L. Pickering, D. Swanepoel, G. Louw, B. v. d. Westhueizen, S. Chidziva, C. Sita, B. Bladergroen and V. Linkov, “Industrial-scale metal hydride hydrogen compressors developed at the South African Institute for Advanced Material Chemistry,” Materials today, vol. 5, pp. 10514-10523, 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e7a5a8b-5e81-49cf-9f86-b8b9dd15e759
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.