PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distribution pattern of epiphytic microcrustaceans in relation to different macrophyte microhabitats in a shallow wetland (Upo wetlands, South Korea)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Macrophytes determine the physical complexity of aquatic environments and provide a suitable habitat for colonization by microcrustaceans. We evaluated the effects of a seasonal growth pattern and structure of macrophyte species on epiphytic microcrustaceans collected from macrophyte surfaces (stems and leaves) in shallow wetlands from May 2011 to October 2012. In 2011, epiphytic microcrustaceans that preferred free-floating macrophytes (Spirodela polyrhiza and Salvinia natans) and submerged macrophytes (Potamogeton crispus and Ceratophyllum demersum) were affected by the seasonal growth of these species. Epiphytic microcrustaceans were abundant on the surface of Spirodela polyrhiza in June and August and on Salvinia natans in September and October. In 2012, epiphytic microcrustaceans preferred submerged macrophyte species over the free-floating ones. The results of stable isotope analysis showed that epiphytic microcrustaceans depend on epiphytic particulate organic matter (EPOM) from each macrophyte species rather than on suspended particulate organic matter. Small species (Coronatella rectangula, Pleuroxus laevis, and Chydorus sphaericus) used EPOM (dominated by epiphytic algae) on free-floating and submerged macrophyte species; however, relatively larger species (Ilyocryptus spinifer and Macrothrix rosea) used EPOM only from submerged macrophytes. Based on these findings, we conclude that the distribution of epiphytic microcrustaceans is determined by seasonal characteristics, morphology of macrophyte species, and abundance of food resources.
Rocznik
Strony
151--163
Opis fizyczny
Bibliogr. 59 poz., rys., tab., wykr.
Twórcy
autor
  • National Institute of Ecology, Seo-Cheon Gun, Chungcheongnam province 325-813, Republic of Koreae
autor
  • Department of Biological Sciences, Pusan National University, Busan 609-735, Republic of Korea
autor
  • Department of Biological Sciences, Pusan National University, Busan 609-735, Republic of Korea
autor
  • Department of Biological Sciences, Pusan National University, Busan 609-735, Republic of Korea
Bibliografia
  • [1]. Brandl, Z. (1998). Life strategy and feeding relations of Cyclops vicinus in two reservoirs. Int. Rev. Hydrobiol. 83: 381-388.
  • [2]. Brendonck, L., Maes, J., Rommens, W., Dekeza, N., Nhiwatiwa, T., Barson, M., Callebaut, V., Phiri, C., Moreau, K., Gratwicke, B., Stevens, M., Alyn, N., Holsters, E., Ollevier, F. & Marshall B. (2003). The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). II. Species diversity. Arch. Hydrobiol. 158: 389-405. DOI: 10.1127/0003-9136/2003/0158-0389.
  • [3]. Brett, M.T. & Goldman, C.R. (1997). Consumer versus resource control in freshwater pelagic food webs. Science 275: 384¬386. DOI: 10.1126/science.275.5298.384.
  • [4]. Campeau, S., Murkin, H.R. & Titman, R.D. (1994) Relative importance of algae and emergent plant litter to freshwater marsh invertebrates. Can. J. Fish. Aquat. Sci. 51: 681-692.
  • [5]. Castilho-Noll, M.S.M., Camara C.F., Chicone, M.F. & Shibata, E.H. (2010). Pelagic and littoral cladocerans (Crustacea, Anomopoda and Ctenopoda) from reservoirs of the Northwest of Sao Paulo State, Brazil. Biota Neotrop. 10: 21-30. DOI: 10.1590/S1676-06032010000100001.
  • [6]. Cattaneo, A., Galanti, G.G., Gentinetta, S. & Romo, S. (1998). Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biol. 39: 725-740. DOI: 10.1046/j.1365-2427.1998.00325.x.
  • [7]. Cattaneo, A. & Kalff, J. (1979). Primary production of algae growing on natural and artificial aquatic plants: a study of interactions between epiphytes and their substrate. Limnol. Oceanogr. 24: 1031-1037.
  • [8]. Cheruvelil, K.S., Soranno, P.A., Madsen, J.D. & Roberson, M.J. (2002). Plant architecture and epiphytic macroinvertebrate communities: the role of an exotic dissected macrophyte. J. N. Am. Benthol. Soc. 21: 261-277.
  • [9]. Choi, J.Y., Jeong, K.S., Kim, S.K., La, G.H., Chang, K.H. & Joo, G.J. (2014b). Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecol. Inform. 24: 177-185. DOI: 10.1016/j. ecoinf.2014.09.002.
  • [10]. Choi, J.Y., Jeong, K.S., La, G.H., Kim, S.K. & Joo, G.J. (2014a). Effect of removal of free-floating macrophytes on zooplankton habitat in shallow wetland. Knowl. Manag. Aquatic Ec. 414: 11. DOI: 10.1051/kmae/2014023.
  • [11]. Choi, J.Y., Jeong, K.S., La, G.H., Kim, S.K. & Joo, G.J. (2014c). Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands (South Korea). J. Limnol. 73: 197-202. DOI: 10.4081/jlimnol.2014.736.
  • [12]. Comin, F.A., Romero, J. A., Astorga, V. & Garcia, C. (1997). Nitrogen removal and cycling in restored wetlands used as filters of nutrients for agricultural runoff. Water Sci. Technol. 35: 255-261. D0I:10.1016/S0273-1223(97)00076-0.
  • [13]. Cooper, M.J., Uzarski, D.G. & Burton, T.M. (2007). Macroinvertebrate community composition in relation to anthropogenic disturbance, vegetation, and organic sediment depth in four Lake Michigan drowned river-mouth wetlands. Wetlands 27: 894-903. DOI: 10.1672/0277-5212(2007)27[894:MCCIRT]2.0.C0;2.
  • [14]. Dean, R.L. & Connell, J.H. (1987). Marine invertebrates in an algal succession. III. Mechanisms linking habitat complexity with diversity. J. Exp. Mar. Biol. Ecol. 109: 249-273. DOI: 10.1016/0022-0981(87)90057-8.
  • [15]. Douglas, M. & Lake, P.S. (1994). Species richness of stream stones: an investigation of the mechanisms generating the species-area relationship. Oikos 69: 387-396.
  • [16]. Downing, J.A. & Cyr, H. (1985). Quantitative estimation of epiphytic invertebrate populations. Can. J. Fish. Aquat Sci 42: 1570-1579.
  • [17]. Gyllstrom, M., Hansson, L.A., Jeppesen, E., Garcia-Criado, F., Gross, E., Irvine, K., Kairesalo, T., Kornijow, R., Miracle, M.R., Nykanen, M., Noges, T., Romo, S., Stephen, D., van Donk, E. & Moss, B. (2005). The role of climate in shaping zooplankton communities of shallow lakes. Limnol. Oceanogr. 50: 2008-2021.
  • [18]. Haney, J.F. & Hall, D.J. (1973). Sugar-coated Daphnia: A preservative technique for Cladocera. Limnol. Oceanogr. 18: 31-333. DOI: 10.4319/lo.1973.18.2.0331.
  • [19]. Hann, B.J. & Turner, M.A. (1999). Exploitation by microcrustacea of a new littoral habitat in an acidified lake. Hydrobiologia 416: 65-75. DOI: 10.1023/A:1003894511586.
  • [20]. Heck, K.L. Jr. & Wetstone G.S. (1977). Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. J. Biogeogr. 4: 135-142.
  • [21]. Stansfield, J.H., Perrow, M.R., Tench, L.D., Jowitt, A.J.D. & Taylor, A.A.L. (1997). Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. In Kufel, L. Prejs, A. & Rybak, J.I. (Eds.), Shallow Lakes ’95 (pp. 229-240). Springer Netherlands Press. DOI: 10.1007/978-94-011-5648-6_25.
  • [22]. Jeppesen, E., Lauridsen, T.L., Kairesalo, T. & Perrow, M.R. (1998). Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In E. Jeppesen, M. S0ndergaard & K. Christoffersen (Eds.), The Structuring Role of Submerged Macrophytes in Lakes. (pp. 91-114). New York. Springer. DOI: 10.1007/978-1-4612-0695-8_5.
  • [23]. Kairesalo, T. (1984). The seasonal succession of epiphytic communities within an Equisetum fluviatile L. stand in Lake Paajarvi, southern Finland. Internationale Revue der gesamten Hydrobiologie und Hydrographie 69: 475-505.
  • [24]. Kang, E.Y., Kim, T.G. & Oh, K.H. (2009). Seasonal changes of the vegetation structure and the primary production in the disturbed banks of the Upo Wetland. Korean Wetlands Society 11: 61-70.
  • [25]. Krecker, F.H. (1939). A comparative study of the animal population of certain submerged aquatic plants. Ecology 20: 553-562.
  • [26]. Kroger, R., Holland, M.M., Moore, M.T. & Cooper, C.M. (2007). Plant senescence: a mechanism for nutrient release in temperate agricultural wetlands. Environ. Pollut. 146: 114¬119. DOI:10.1016/j.envpol.2006.06.005.
  • [27]. Kuczyńska-Kippen, N.M. & Nagengast, B. (2006). The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia 559: 203-212. DOI: 10.1007/s10750-005-0867-0.
  • [28]. Lodge, D.M. (1991). Herbivory on freshwater macrophytes. Aquat. Bot. 41: 195-224. DOI: 10.1016/0304-3770(91)90044- 6.
  • [29]. Manatunge, J., Asaeda, T. & Priyadarshana, T. (2000). The influence of structural complexity on fish-zooplankton interactions: A study using artificial submerged macrophytes. Environ. Biol. Fish. 58: 425-438. DOI: 10.1023/A:1007691425268.
  • [30]. Meerhoff, M., Fosalba, C., Bruzzone, C., Mazzeo, N., Noordoven, W. & Jeppesen, E. (2006). An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biol. 51: 1320-1330. DOI: 10.1111/j.1365-2427.2006.01574.x.
  • [31]. Meerhoff, M., Iglesias, C., De Mello, F.T., Clemente, J.M., Jensen, E., Lauridsen, T.L. & Jeppesen, E. (2007). Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biol. 52: 1009-1021. DOI: 10.1111/j.1365-2427.2007.01748.x.
  • [32]. Minshall, G.W. (1984). Aquatic insect-substratum relationships. In V.H. Resh & D.M. Rosenberg (Eds.), The ecology of aquatic insects (pp 358-400). New York. Praeger press.
  • [33]. Mizuno, T. & Takahashi, E. (1991). An illustrated guide to freshwater zooplankton in Japan. Tokyo: Tokai University Press.
  • [34]. Moss, B., Kornijow, R. & Measey, G.J. (1998). The effects of nymphaeid (Nuphar lutea) density and predation by perch (Perca fluviatilis) on the zooplankton communities in a shallow lake. Freshwater Biol. 39: 689-697. DOI: 10.1046/j.1365-2427.1998.00322.x.
  • [35]. Muylaert, K., Perez-Martinez, C., Sanchez-Castillo, P., Lauridsen, T.L., Vanderstukken, M., Declerck, S.A.J., Van der Gucht, K., Conde-Porcuna, J.M., Jeppesen, E., Meester, L.D. & Vyverman, W. (2010). Influence of nutrients, submerged macrophytes and zooplankton grazing on phytoplankton biomass and diversity along a latitudinal gradient in Europe. Hydrobiologia 653: 79-90. DOI: 10.1007/s10750-010-0345-1.
  • [36]. Newman, R.M. (1991). Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. J. N. Am. Benthol. Soc. 10: 89-114.
  • [37]. O’Hare, M.T., Baattrup-Pedersen, A., Nijboer, R., Szoszkiewicz, K. & Ferreira, T. (2006). Macrophyte communities of European streams with altered physical habitat. Hydrobiologia 566: 197-210. DOI: 10.1007/s10750-006-0095-2.
  • [38]. Otto, C. & Svensson, B.S. (1981). How do macrophytes growing in or close to water reduce their consumption by aquatic herbivores?. Hydrobiologia 78: 107-112.
  • [39]. Park, S.B. (1998). Basic water quality of the mid to lower part of Nakdong River and the influences of the early rainfall during monsoon on the water quality. M.S. thesis, Pusan National University, Pusan, p. 104.
  • [40]. Pelicice, F. M. & Agostinho, A.A. (2006). Feeding ecology of fishes associated with Egeria spp. patches in a tropical reservoir. Brazil. Ecol. Freshw. Fish 15: 10-19. DOI: 10.1111/j. 1600- 0633.2005.00121.x.
  • [41]. Pinnegar, J.K. & Polunin, N.V.C. (1999). Differential fractionation of 513C and 515N among fish tissues: implications for the study of trophic interactions. Funct. Ecol. 13: 225-231. DOI: 10.1046/j.1365-2435.1999.00301.x.
  • [42]. Plapmann, T., Maier, G. & Stich, H.B. (1997). Predation impact of Cyclops vicinus on the rotifer community in Lake Constance in spring. J. Plankton Res. 19: 1069-1079. DOI: 10.1093/ plankt/19.8.1069.
  • [43]. Rooke, B. (1986). Macroinvertebrates associated with macrophytes and plastic imitations in the Eramosa River, Ontario, Canada. Arch. Hydrobiol. 106: 307-325.
  • [44]. Rooke, J.B. (1984). The invertebrate fauna of four macrophytes in a lotic system. Freshwater Biol. 14: 507-513. DOI: 10.1111/ j.1365-2427.1984.tb00171.x.
  • [45]. Rosine, W.N. (1955). The distribution of invertebrates on submerged aquatic plant surfaces in Muskee Lake, Colorado. Ecology 36: 308-314. DOI: 10.2307/1933237.
  • [46]. Sagrario, G., De Los Angeles, M., Balseiro, E., Ituarte, R. & Spivak, E. (2009). Macrophytes as refuge or risky area for zooplankton: a balance set by littoral predacious macroinvertebrates. Freshwater Biol. 54: 1042-1053. DOI: 10.1111/j.1365-2427.2008.02152.x.
  • [47]. Sakuma, M., Hanazato, T., Nakazato, R. & Haga, H. (2002). Methods for quantitative sampling of epiphytic microinvertebrates in lake vegetation. Limnology 3: 115-119. DOI: 10.1007/s102010200013.
  • [48]. Sakuma, M., Hanazato, T., Saji, A. & Nakazato, R. (2004). Migration from plant to plant: an important factor controlling densities of the epiphytic cladoceran Alona (Chydoridae, Anomopoda) on lake vegetation. Limnology 5: 17-23. DOI: 10.1007/s10201-003-0110-5.
  • [49]. Schindler, D.E. & Scheuerell, M.D. (2002). Habitat coupling in lake ecosystems. Oikos 98: 177-189. DOI: 10.1034/j.1600-0706.2002.980201.x.
  • [50]. Smokorowski, K.E. & Pratta, T.C. (2007). Effect of a change in physical structure and cover on fish and fish habitat in freshwater ecosystems - a review and meta-analysis. Environ. Rev. 15: 15-41. DOI: 10.1139/a06-007.
  • [51]. Strayer, D.L., Lutz, C., Malcom, H.M., Munger, K. & Shaw, W.H. (2003). Invertebrate communities associated with a native (Vallisneria americana) and an alien (Trapa natans) macrophyte in a large river. Freshwater Biol. 48: 1938-1949.
  • [52]. Takai, N., Mishima, Y., Yorozu, A. & Hoshika, A. (2002). Carbon sources for demersal fish in the western Seto Inland Sea, Japan, examined by 513C and 515N analyses. Limnol. Oceanogr. 47: 730-471.
  • [53]. Theel, H.J., Dibble, E.D. & Madsen, J.D. (2008). Differential influence of a monotypic and diverse native aquatic plant bed on a macroinvertebrate assemblage; an experimental implication of exotic plant induced habitat. Hydrobiologia 600: 77-87. DOI: 10.1007/s10750-007-9177-z.
  • [54]. Tolonen, K.T., Holopainen, I.J., Hamalainen, H., Rahkola- Sorsa, M., Ylostalo, P., Mikkonen, K. & Karjalainen, J. (2005). Littoral species diversity and biomass: concordance among organismal groups and the effects of environmental variables. Biodivers. Conserv. 14: 961-980. DOI: 10.1007/ s10531-004-8414-2.
  • [55]. van Donk, E. & van de Bund, W.J. (2002) Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot. 72: 261-274. DOI:10.1016/S0304- 3770(01)00205-4
  • [56]. Venugopal, M.N. & Winfield, I.J. (1993). The distribution of juvenile fishes in a hypereutrophic pond: can macrophytes potentially offer a refuge for zooplankton?. J. Freshwater Ecol. 8: 389-396. DOI:10.1080/02705060.1993.9664877.
  • [57]. Vollenweider, R.A. (1974). The production biology of the lower Laurentian Great Lakes - a preamble. J. Fish. Res. Board Can. 31: 251-252. DOI: 10.1139/f74-044.
  • [58]. Warfe, D.M. & Barmuta, L.A. (2004). Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171-178. DOI: 10.1007/ s00442-004-1644-x.
  • [59]. Yang, Y.F., Yang, J.X. & Huang, X.F. 1998. Feeding of Cyclops vicinus on zooplankton. Acta hydrobiol. Sinica 22: 170-175 (in Chinese with English abstract).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e71af6c-3eb3-4780-a441-da5b70bca752
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.