Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Coal liquefaction and heavy oil processing have become the urgent need for national energy strategic technology reserves in China. However, the inactivation of solid catalysts in these processes is an inevitable problem. Therefore,a self-catalysed method was proposed. The properties of raw oil could be changed by adding a modifier, as it has the function of self-catalysis, and the additional catalyst is no longer needed. The effect of 200 ppm modifier onthe hydrogenation of heavy oil and 500 ppm on the hydrogenation of coal and oil were investigated. The results showed that modifiers could be miscible with heavy oil at 50~100 °C and could change the properties of oil. When the temperature exceeded 250 °C, the sulfur element in the heavy oil combined with the metal element broughtin by the modifier to form a particle with the size of 2–8 nm, which could interact with the hydrogen molecule toactivate the hydrogen molecule. Activated hydrogen atoms further formed the complexes with nickel, vanadium,calcium, iron, and other elements in heavy oil to achieve the purpose of purifying and lightening the oil phase.Therefore, the self-catalysed method could be widely used in oil re fining and would greatly promote the development of the oil refining and catalysis industry.
Czasopismo
Rocznik
Tom
Strony
8--14
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wz.
Twórcy
autor
- Catech Technology Corp, Ltd., Beijing 100098, China
autor
- SINOPEC Qilu Company, Zibo, Shandong 255400, China
autor
- State Key Laboratory of Petroleum Resources and Prospecting, Unconventional Petroleum Research Institute, ChinaUniversity of Petroleum-Beijing, Beijing 102249, Chin
autor
- State Key Laboratory of Petroleum Resources and Prospecting, Unconventional Petroleum Research Institute, ChinaUniversity of Petroleum-Beijing, Beijing 102249, China
autor
- Catech Technology Corp, Ltd., Beijing 100098, China
Bibliografia
- 1. Prajapati, R., Kohli, K. & Maity, S.K. (2021). Slurry phase hydrocracking of heavy oil and residue to produce lighter fuels: An experimental review. Fuel, 288, 119686. DOI:10.1016/j.fuel.2020.119686.
- 2. Sun, J.M., Liu, X. & Li, D. (2014). Study on kinetics of medium temperature coal tar hydrocracking. Acta Petrolei Sinica(Petroleum Processing Section) . 30(2), 291–297. DOI:10.3969/j.issn.1001-8719.2014.02.016.
- 3. Kang, K.H., Kim, G.T. & Park, S. (2019). A review on the Mo-precursors for catalytic hydroconversion of heavy oil. J. Ind. Eng. Chem . 76, 1–16. DOI: 10.1016/j.jiec.2019.03.022.
- 4. Bai, P., Etim, U.J. & Yan, Z. (2019). Fluid catalytic cracking technology: current status and recent discoveries on catalyst contamination. Catal Rev. 61(3), 333–405. DOI:10.1080/01614940.2018.1549011.
- 5. Nguyen, M.T., Nguyen, N.T. & Cho, J. (2016). A review on the oil-soluble dispersed catalyst for slurry-phase hydrocracking of heavy oil. J. Ind. Eng. Chem . 43, 1–12. DOI: 10.1016/j.jiec.2016.07.057.
- 6. Du, H.X,. Cao, X.X, & Li, L. (2021). Progress of phase transfer removal of heteroatoms from heavy crude oil. Acta Petrolei Sinica(Petroleum Processing Section) . 37(2): 458–468. DOI: 10.3969/j.issn.1001-8719.2021.02.026.
- 7. Shen, H.P., Dong, M. & Hou, H.D. (2021). Development of clean and efficient processing technology for inferior residue. Petroleum Processing and Petrochemicals. 52(10), 136–143.
- 8. Wang, T., Hou, H.D. & Long, J. (2021). A review on sulfurization of dispersed catalyst for residue hydrotreating. Modern Chemical Industry . 41(3), 68–73. DOI: 10.16606/j.cnki.issn 0253-4320.2021.03.014.
- 9. Luo, H., Sun, J. & Deng, W. (2022). Preparation of Oil-soluble Fe-Ni sulfide nanoparticles for Slurry-Phase hydrocracking of residue. Fue. 321, 124029. DOI: 10.1016/j.fuel.2022.124029.
- 10. Al-Attas, T.A., Ali, S.A. & Zahir, M.H. (2019). Recent advances in heavy oil upgrading using dispersed catalysts. Energy & Fuels. 33(9), 7917–7949. DOI: 10.1021/acs.energyfuels.9b01532.
- 11. Melo-Banda, J., Lam-Maldonado, M. & Rodríguez-Gómez, F. (2022). Ni: Fe: Mo and Ni: Co: Mo nanocatalysts to hydroprocessing to heavy crude oil: Effect of continue phase in the final metallic nanoparticles size. Catal Today. 392, 72–80. DOI: 10.1016/j.cattod.2021.09.018.
- 12. Wang, Z.C., Tu, M.Y. & Pan, C.X. (2022). Thermal stability of heavy oil and lts effect on co-hydroliquefaction of heavy oil and coal. Coal Conversion . 45(6), 62–71. DOI:10.19726/j.cnki.ebcc.202206008.
- 13. Yang, T., Liu, C. & Li, C. (2020). Promotion effect with dispersed Fe-Ni-S catalyst to facilitate hydrogenolysis of lignite and heavy residue. Fuel. 259, 116303. DOI: 10.1016/j.fuel. 2019.116303.
- 14. Li, C., Meng, H. & Yang, T. (2018). Study on catalytic performance of oil-soluble iron-nickel bimetallic catalyst in coal/oil co-processing. Fuel. 219, 30–36. DOI: 10.1016/j.fuel.2018.01.068.
- 15. Bacaud, R. (2014). Dispersed phase catalysis: Past and future. Celebrating one century of industrial development. Fuel. 117, 624–632. DOI: 10.1016/j.fuel.2013.09.027.
- 16. Kang, K.H., Nguyen, N.T. & Seo, P.W. (2020). Slurryphase hydrocracking of heavy oil over Mo precursors: Effect of triphenylphosphine ligands. J. Catal . 384, 106–121. DOI:10.1016/j.jcat.2020.02.007.
- 17. Yang, T., Zheng, J. & Liu, C. (2022). Utilization of coal liquefaction solid residue waste as an effective additive for enhanced catalytic performance. Fuel. 329, 125454. DOI:10.1016/j.fuel.2022.125454.
- 18. Thakur, D.S. & Thomas, M.G. (1985). Catalyst deactivation in heavy petroleum and synthetic crude processing: a review. Appl. Catal ., 15(2), 197–225. DOI: 10.1016/S0166-9834(00)81837-0.
- 19. Kressmann, S., Morel, F. & Harlé, V. (1998). Recent developments in fixed-bed catalytic residue upgrading. Catal Today., 43(3–4), 203–15. DOI: 10.1016/S0920- 5861(98)00149-7.
- 20. Furimsky, E., & Massoth, F.E. (1999). Deactivation of hydroprocessing catalysts. Catal Today., 52(4), 381–495. DOI:10.1016/S0920-5861(99)00096-6.
- 21. Rana, M.S., Sámano, V. & Ancheyta, J. (2007). A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel., 86(9), 1216–1231. DOI: 10.1016/j.fuel.2006.08.004.
- 22. Rana, M.S., Ancheyta, J. & Maity, S. (2008). Comparison between refinery processes for heavy oil upgrading: a future fuel demand. Int. J. Oil Gas Coal Technol., 1(3), 250–282. DOI:10.1504/IJOGCT.2008.019845.
- 23. Liu, Y., Gao, L. & Wen, L. (2009). Recent advances in heavy oil hydroprocessing technologies. Recent Patents on Chem. Engin. , 2009, 2(1), 22–36.
- 24. Callejas, M.A., Mart ınez, M. & Blasco, T. (2001). Coke characterisation in aged residue hydrotreating catalysts by solid-state 13C-NMR spectroscopy and temperature-programmed oxidation. Appl. Catal ., 218(1–2), 181–188. DOI: 10.1016/S0926- 860X(01)00640-8.
- 25. Callejas, M.A. & Martínez, M.T. (1999). Hydrocracking of a Maya residue. Kinetics and product yield distributions. Ind. Eng. Chem. Res. 38(9), 3285–3289. DOI: 10.1021/ie9900768.
- 26. Rana, M.S., Ancheyta, J. & Sahoo, S.K. (2014). Carbon and metal deposition during the hydroprocessing of Maya crude oil. Catal. Today., 220, 97–105. DOI: 10.1016/j.cattod.2013.09.030.
- 27. Delmon, B.P. (1980). Grange in: B. Delmon and GF Froment (Eds): Catalyst Deactivation. Stud. Surf. Sci. Catal., 6, 507.
- 28. Stanislaus, A. & Marafi, M. (2005). Investigation of themechanism of sediment formation in residual oil hydrocracking process through characterization of sediment deposits. Catal. Today., 109(1–4), 167–177. DOI: 10.1016/j.cattod.2005.08.014.
- 29. Absi-Halabi, M., Stanislaus, A. & Trimm, D. (1991). Coke formation on catalysts during the hydroprocessing of heavy oils. Appl. Catal ., 72(2), 193–215. DOI: 10.1016/01669834(91)85053-X.
- 30. Ancheyta, J. (2010). Asphaltenes: chemical transformation during hydroprocessing of heavy oils. New York, USA: Taylor & Francis Group.
- 31. Moulijn, J.A., Van Diepen, A. & Kapteijn, F. (2001). Catalyst deactivation: is it predictable? What to do? Appl. Catal., 212(1–2), 3–16. DOI: 10.1016/S0926- 860X(00)00842-5.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e6c8e08-0857-4e87-8543-f6fd70659837