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Abstract. Anisotropic shading techniques can be used for materials like hair and silk. Such materials 
have a surface consisting of very small fibers having a main direction. Geometrically each fiber can be 
viewed as a cylinder. Poulin and Fournier proposed an illumination model for such materials using a 
flat topology only. In the paper a model using a varying topology is described. The varying topology is 
a more correct model and visible differences are clearly apparent. In the paper the necessary equations 
for computing the geometry of the fibers are presented.  
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1. Introduction 
Anisotropic shading techniques can be used for materials like hair [4, 5] and silk [3]. 

Such materials have a surface consisting of very small fibers having a main direction, i.e. the 
tangent direction of the surface. Each fiber can be viewed as a cylinder. Poulin and Fournier 
[3] proposed an illumination model for such materials using a flat topology only. If the fibers 
have a varying topology [1] that allows fibers to climb on other fibers as it will be the case 
when for example a silk thread is winded around the body of a torus then the hiding and shad-
owing must be computed for three different possible cases. This model assumes that the cyl-
inders to the left and right are at equal height compared to the cylinder in the middle. Figure 1 
shows how threads are climbing on each other. 
 
 

 
 

Figure 1: The fibers in the flat topology (in the bottom) start to climb on their neighbors  
(in the middle), creating a new topology and finally a flat topology is obtained  

(on the top) when the fibers have climbed as high as possible. 
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Figure 2: Flat topology (in the top) and varying topology (in the bottom). 
 Visible differences are apparent. 

 
Figure 2 shows the difference between using the varying topology and just assuming a flat 
topology everywhere. The varying topology is a more correct model and visible differences 
are clearly apparent. In the rest of the paper the necessary equations for computing the ge-
ometry of the fibers are presented. How to compute the actual shading is presented in [1]. 
 
2. Intersections 

The computation of intersections in the hiding and shadowing of fibers with varying 
topology will always involve the rotation of a vector with unit length. These computations 
can be performed efficiently on modern hardware with vector operation support, since rota-
tion is just a matrix product. There are three different cases that must be determined for shad-
ing. 

Figure 3 shows the projected view vector and the hiding and shadowing. It is neces-
sary to compute the two intersection points I1 and I2. This can be done using the equations for 
ray-sphere intersection [1].  

 

 
Figure 3: The geometry of fibers showing intersection points. 
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The view vector v and the vector in the direction to the light source l are both projected onto 
the plane spanned by the normal and the bi-tangent. In this space it is possible to compute the 
intersection points. It will be shown how the intersections can be computed using an arbitrary 
vector v, which can be defined as 

[ ]θθ sin,cos=v                                                                (1) 

whereθ  is the angle of the vector with respect to the bi-tangent B on the unit circle that is 
represented by each fiber. The points P1 and P2 in Figure 3 is therefore 

[ ] [ ]θθθθ cos,sin,cos,sin −+=−= CPP 21                                       (2) 

where C is  
[ ]φφ sin,cos2=C                                                             (3) 

andφ  is the angle between the point C and the bi-tangent B. The intersection points I1 and I2 

can be computed by using the equation for ray sphere-intersection [1]. If the cylinder disc is 
centered around the origin with the radius 1, in some arbitrary scale and the direction of the 
ray is represented by v and the start point is P, then the ray is 

vPR tt +=)(                                                                (4) 

Hence the intersection point can be computed using these intermediate computations 
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The parameter t is finally put into equation 4, in order to obtain the intersection points. The 
final equation is rather complex when expressed in terms of θ and φ . 

 
3. Results 

The final formulas will be presented in this section. Use equation 5 and 6 to compute 
I1 in Figure 3, then 
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Similar equations will be obtained for the other two cases. Obviously, there are some simpli-
fications that can be done since it is possible to rearrange the terms using the Pythagorean 
identity. Moreover, we can arrange the terms in such a way that geometrically interesting re-
lation is clearly visible. The equation for computing point I1 then becomes 
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It can easily be shown that [cos φ, sin φ]T is a unit length vector. Furthermore, it is obvious 
that this vector is rotated clockwise by the preceding matrix with an angle θ. The first term in 
equation 9 is just a translation. Similar equations can be derived for I2 as well as for the other 
cases that will occur, e.g. the whole middle cylinder can be hidden. Each equation will be a 
rotation with an angle θ of a vector with unit length. Moreover, for this case we have 

)sin(21sin φθϕ +−=                                                 (11) 

In the following equations only this latter formula will be shown since it is compact and the 
cosine can be computed from it. 
 
The intersection point I2 in Figure 3 lies on the middle cylinder and no translation is neces-
sary. The final formula becomes  
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where 
 

)sin(21sin θφϕ −+=                                                (13) 
 

 

 
Figure 4: The geometry of fibers showing intersection points 

for the second possible case. 
 

When cosθ < sinφ  then we have the situation shown in Figure 4 so that the left cylinder shad-
ows the one in the middle. We can compute I1 as 
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Figure 5: The geometry of fibers showing intersection points 
 for the third case. 

 

If the sum of the terms inside the square root involved in computing cos φ are negative then 
we have the case shown in Figure 5. The intersection point can now be computed using 
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where 

)cos()sin(21sin φθϕ −=                                              (17) 

Also note that we must be able to handle the case when the vector v is pointing in the direc-
tion to the left. So far the pictures in Figure 3-5 have shown the vector pointing to the right. 
For these cases we get very similar computations. 
4. Conclusions 

The computation of intersections in the hiding and shadowing of fibers with varying 
topology involves a rotation of a vector with unit length. This vector depends on the other 
two angles involved, i.e. the view (or light source vector) and the vector in the direction to 
the center of the elevated cylinder. These equations can easily be implemented in modern 
graphics hardware to compute the geometry used for anisotropic shading of fibers with 
varying topology. 
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GEOMETRIA WŁÓKIEN ZE ZMIENNĄ TOPOLOGIĄ 
 

Anizotropowe techniki cieniowania barw przedmiotów opierają się na materiałach 
takich jak włosy lub jedwab. Materiały te mają powierzchnię składającą się z bardzo cienkich 
włókien mających kierunek styczny do powierzchni. Geometrycznie każde włókno może być 
wizualizowane jako walec. Paulin i Fournier proponują model iluminacji używając jedynie 
płaskiej topologii. W pracy opisano model z wykorzystaniem zmiennej topologii i uzyskano o 
wiele bardziej poprawne przedstawienie obiektu. Wyprowadzono wzory niezbędne do 
obliczeń geometrii włókien.  

 


