Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates the inverse Laplace transform of a certain class of functions. This inverse Laplace transform is obtained in the form of an infinite series of the three-parameter Mittag-Leffler function. Additionally, we found the sum of an infinite series of Mittag-Leffler functions with three parameters in terms of the Wright function. As an application, we get an exact solution of the time-fractional diffusion-wave equation with the Hilfer-Prabhakar time-fractional derivative using Laplace and Fourier transforms.
Rocznik
Tom
Strony
56--65
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, Faculty of Science, New Mansoura UniversityNew Mansoura City, Egypt
- Department of Mathematics and Engineering Physics, Engineering Faculty Mansoura University, Mansoura, Egypt
autor
- Department of Mathematics and Engineering Physics, Engineering Faculty Mansoura University, Mansoura, Egypt
autor
- Department of Mathematics, Faculty of Science, New Mansoura UniversityNew Mansoura City, Egypt
- Department of Mathematics and Engineering Physics, Engineering Faculty Mansoura University, Mansoura, Egypt
Bibliografia
- 1. Ansari, A., & Sheikhani, A.R. (2014). New identities for the Wright and the Mittag-Leffler functions using the Laplace transform. Asian-European Journal of Mathematics, 7(3), 1450038.
- 2. Elhadedy, H., Latif, M.S.A., Nour, H.M., & Kader, A.H.A. (2022). Exact solution for heat conduction inside a sphere with heat absorption using the regularized Hilfer-Prabhakar derivative. Journal of Applied Mathematics and Computational Mechanics, 21(2), 27-37.
- 3. Garra, R., Gorenflo, R., Polito, F., & Tomovski, Z. (2014). Hilfer Prabhakar derivatives and some applications. Applied Mathematics and Computation, 242, 276-589.
- 4. Bokhari, A., Belgacem, R., Kumar, S., Baleanu, D., & Djilali, S. (2022). Projectile motion using three parameter Mittag-Leffler function calculus. Mathematics and Computers in Simulation, 195, 22-30.
- 5. Kilbas, A.A., Srivastava, H.M., & Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations. Elsevier.
- 6. Mainardi, F., Mura, A., & Pagnini, G. (2010). The M-Wright function in time-fractional diffusion processes: A tutorial survey. International Journal of Differential Equations, 104505.
- 7. Srivastava, H.M., & Choi, J. (2011). Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier.
- 8. Sandev, T., & Tomovski, Z. (2019). Fractional Equations and Models. Theory and Applications. Cham: Springer Nature Switzerland AG.
- 9. Korotkov, N.E., & Korotkov, A.N. (2020). Integrals Related to the Error Function. Chapman and Hall/CRC.
- 10. Povstenko, Y. (2015). Linear Fractional Diffusion-wave Equation for Scientists and Engineers. Springer International Publishing.
- 11. Pskhu, A., & Rekhviashvili, S. (2020). Fractional diffusion-wave equation with application in electrodynamics. Mathematics, 8(11), 2086.
- 12. Maimardi, F. (2022). Fractional Calculus and Waves in Linear Viscoelasticity, 2nd Edition. World Scientific.
- 13. Chen, W., Sun, H., & Li, X. (2022). Fractional Derivative Modeling in Mechanics and Engineering.Springer Nature.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e6761d7-21f5-43b7-84de-5cd65db193bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.