PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Revalorization of mineral coal, to obtain carbonaceous materials with high added value

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper shows the possibility that the mineral coal existing in the mining basins of northern Spain have a high added value. This would facilitate its future use in different fields such as new materials, nanotechnology, energy use in situ, coal bed methane, enhanced coal bed methane and coalmine methane.An analytical study of mineral coal samples is carried out. The samples come from two deposits loca-ted in coal basins of the Cantabrian Mountains. The duly prepared samples are subjected to an activation process. Within this transformation, different treatments are applied to different sub-samples. Some of the sub-samples suffer a previous demineralization by successive attacks with acids, followed by oxidation and pyrolysis. Finally, all of them are activated with CO2 and H2O(steam).The carbonaceous products resulting from each treatment are characterised. The results show that all the pre-treatments used were positive for the textural development of the materials. Likewise, proper management of the processes and of the different operating variables allows the procurement of carbo-naceous materials with a “tailor-made” structural development of the coal type. This material receives the name “activated” and can be employed in specific processes.
Rocznik
Strony
225--239
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
  • Construction and Manufacturing Engineering, University of Oviedo, Spain
  • Construction and Manufacturing Engineering, University of Oviedo, Spain
  • Construction and Manufacturing Engineering, University of Oviedo, Spain
  • Construction and Manufacturing Engineering, University of Oviedo, Spain
  • Construction and Manufacturing Engineering, University of Oviedo, Spain
Bibliografia
  • [1] Acevedo B., Barriocanal C., Álvarez R., 2013. Pyrolysis of blends of coal and tire wastes in a fixed bed reactor and a rotary oven. Fuel 113, 817-825.
  • [2] AENOR, 1984. Norma UNE 32004, Combustibles minerales sólidos. Determinación de cenizas.
  • [3] AENOR, 1995a. Norma UNE 32002, Combustibles minerales sólidos. Determinación de la humedad de la muestra para análisis.
  • [4] AENOR, 1995b. Norma UNE 32112, Combustibles minerales sólidos. Determinación del carbono e hidrogeno.
  • [5] AENOR, 1995c. Norma UNE 32013, Carbón. Determinación del nitrógeno. Método semi-micrométrico de Kjeldahl.
  • [6] AENOR, 1995d. Norma UNE 32008, Carbón. Determinación del azufre total. Método Eschka.
  • [7] AENOR, 1999. Norma UNE 32019,Combustibles minerales sólidos. Determinación del contenido en materias volátiles.
  • [8] ASTM, 2013. Norma 4326, Standard Test Method for Major and Minor Elements in Coal and Coke Ash By X-Ray Fluorescence.
  • [9] ASTM, 2017. Norma ASTM E-11, Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves.
  • [10] Bansal R.C., Goyal M., 2005. Activated Carbon Adsorption. Taylor anf Francis Group, CRC Press, Boca Raton – USA.
  • [11] Benaddi H., Legras D., Rouzard J.N., Béguin F., 1998. Influence of the atmosphere in the chemical activation of wood by phosphoric acid, Chemistry, 36.
  • [12] Benedetti V., Patuzzi F., Baratieri M., 2018. Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. Applied Energy 227, 1, 92-99.
  • [13] Byamba-Ochira N., Shimb W.G., Balathanigaimanic M.S., Moona H., 2016. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation. Applied Surface Science 379, 30, 331-337.
  • [14] Casado-Sulé C., 2013. Análisis de la explotación de capas potentes de carbón con alto contenido en grisú. PhD thesis, Department of Mining Explotation and Prospecting, School of Mining Energy and Materials, University of Oviedo, Spain.
  • [15] Chaparro M., Acosta I., Berra N., 1987. Carbón activo a partir de residuos de petróleo. Chemical Engineering.
  • [16] Dubinin M.M., Zaverina E.D., 1949. Dokl. Akad. Nauk, SSSR 65, 295.
  • [17] Dubinin M.M., Kadlec O., Botlík I., Zaverina E.D., Zukal A., Sumec B., 1969. Dokl. Akad. Nauk, SSSR 57.
  • [18] González-García P., 2018. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, char-acterization techniques and applications. Renewable and Sustainable Energy Reviews 82, 1, 1393-1414.
  • [19] Gratuito M.K.B., Panyathanmaporn T., Chumnanklang R.A., Sirinuntawittaya N., Dutta A., 2008. Production of activated carbon from coconut shell: Optimization using response surface methodology. Bioresource Technology 99, 4887-4895.
  • [20] Huggins F.E., 2002. Overview of analytical methods for inorganic constituents in coal. International Journal of Coal Geology 50, 1-4, 169-214.
  • [21] ISO, 2016. Norma ISO 15901-1. Evaluation of pore size distribution and porosity of solid materials by mercury poro-simetry and gas adsorption – Part 1: Mercury porosimetry.
  • [22] Jankowska H., Swiatkowski A., Com Aj., 1991. Active Carbon. Ellis Horwood, London.
  • [23] Kirk-Othmer, 2007. Encyclopedia of Chemical Technology. Volume Set, 5th Edition, Ed. Kirk-Othmer, New York.
  • [24] Pis J.J., Mahamud M., Pajares J.A., Parra J.B., Bansal R.C., 1998. Preparation of active carbons from coal Part III: Activation of char. Fuel processing technology 57, 3, 149-161.
  • [25] Pis J.J., Cagigas A., Simón P., Lorenzana J.J., 1998b. Effect of aerial oxidation of coking coals on the technological properties of the resulting cokes. Fuel Processing Technology 20, 307-316.
  • [26] Rodríguez R., 2014. Aprovechamiento integral de residuos sólidos de curtición. Implicaciones medioambientales. PhD thesis,, Department of Energy, University of Oviedo, Spain.
  • [27] Rouquerol J., Avnir D., Fairbridge C.W., Everett D.H., Haynes J., Pernicone N., Ramsay J.D.F., Sing K.S.W., Unger K.K., 1994. Recommendations for the characterization of porous solids. Pure and Applied Chemistry 66, 8, 1739-1758.
  • [28] Serrano B., 1994. Preparación y caracterización de carbones activos a partir de carbón bituminoso. PhD tesis, Depart-ment of de Chemistry, University of Alicante, Spain.
  • [29] Sing K.S.W., 1982. Reporting physisorption data for gas/solid systems. Pure and Applied Chemistry 54, 11, 2201-2218.
  • [30] Wenya A., Jie F., Xiao M., Quinhao K., Cunmei R., Yang L., Hedong Z., Jing L., Guangquing L., Jianjun D., 2018. Microwave assisted preparation of activated carbon from biomass: A review. Renewable and Sustainable Energy Reviews 92, 958-979.
  • [31] Yeng H., Hameed B., 2009. Recent developments in the preparation and regeneration of activated carbons by microwaves. Advances in Colloids and Interface. Science 149, 1-2, 19-27.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e651ae1-9cef-445a-8c72-cfcc20b254b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.